亚洲性爱之国产精品_被黑人强到高潮不断视频_国内真实愉拍系列高中生_色偷偷av资源站

新聞動(dòng)態(tài)

應(yīng)用萬深儀器的部分學(xué)術(shù)論文(1306篇)

發(fā)布人:wseen 時(shí)間:2022-2-14 15:37:50

[1].Xu Ruibin, et al."A C-Terminal Encoded Peptide, ZmCEP1, is essential for kernel development in maize (Zea mays L.).." Journal of experimental botany 72.15(2021): doi:10.1093/JXB/ERAB224.(IF5.557)

[2].Wen Shaozhe, et al."A Major Quantitative Trait Loci Cluster Controlling Three Components of Yield and Plant Height Identified on Chromosome 4B of Common Wheat ." Frontiers in Plant Science .(2022): doi:10.3389/FPLS.2021.799520.(LA-S,IF4.568)

[3].Yuan Hua, et al."A natural allele of TAW1 contributes to high grain number and grain yield in rice." The Crop Journal 9.5(2021): doi:10.1016/J.CJ.2020.11.004.(SC-G)

[4].Liu Jiajia, et al."A promising crop for cadmium-contamination remediation: Broomcorn millet.." Ecotoxicology and environmental safety 224.(2021): doi:10.1016/J.ECOENV.2021.112669.(LA-S,IF5.248)

[5].Meng Tianyao, et al."Agronomic and physiological traits facilitating better yield performance of japonica/indica hybrids in saline fields." Field Crops Research 271.(2021): doi:10.1016/J.FCR.2021.108255.(LA-S,IF4.856)

[6].Ren Xiaoli, et al."Alternative Splicing of TaGS3 Differentially Regulates Grain Weight and Size in Bread Wheat." International Journal of Molecular Sciences 22.21(2021): doi:10.3390/IJMS222111692.(SC-G,IF4.602)

[7].Han, Xia, et al."Arbuscular Mycorrhizal Fungus and Exogenous Potassium Application Improved Lycium barbarum Salt Tolerance." Journal of Plant Growth Regulation .prepublish(2021): doi:10.1007/S00344-021-10489-X.(IF2.751)

[8].Li Yan, et al."Blocking miR530 Improves Rice Resistance, Yield, and Maturity ." Frontiers in Plant Science 12.(2021): doi:10.3389/FPLS.2021.729560.(SC-A,IF4.568)

[9].Li Yan, et al."Blocking Osa-miR1871 enhances rice resistance against Magnaporthe oryzae and yield.." Plant biotechnology journal .(2021): doi:10.1111/PBI.13743.(IF8.738)

[10].Jing Fanli, et al."Characterization of TaSPP-5A gene associated with sucrose content in wheat (Triticum aestivum L.)." BMC Plant Biology 22.1(2022): doi:10.1186/S12870-022-03442-X.(IF3.695)

[11].Dong Shiqing, et al."Cloning and functional analysis of LH2, a gene controlling late heading in rice." Crop Science 61.4(2021): doi:10.1002/CSC2.20501.(SC-G,IF2.003)

[12].Shi Shijie, et al."Comprehensive Evaluation of 17 Qualities of 84 Types of Rice Based on Principal Component Analysis." Foods 10.11(2021): doi:10.3390/FOODS10112883.(SC-E)

[13].Riaz Aamir, et al."Development of Chromosome Segment Substitution Lines and Genetic Dissection of Grain Size Related Locus in Rice." Rice Science 28.4(2021): doi:10.1016/J.RSCI.2021.05.003.

[14].Zheng Shilu, et al."Disentangling biotic and abiotic drivers of intraspecific trait variation in woody plant seedlings at forest edges." Ecology and Evolution 11.14(2021): doi:10.1002/ECE3.7799.(LA-S,IF2.621)

[15].Gao Yutian, et al."Dissecting the genetic basis of grain morphology traits in Chinese wheat by genome wide association study." Euphytica 217.4(2021): doi:10.1007/S10681-021-02795-Y.(SC-A,IF1.697)

[16].Xue Pao, et al."Dissection of Closely Linked Quantitative Trait Locis Controlling Grain Size in Rice ." Frontiers in Plant Science .(2022): doi:10.3389/FPLS.2021.804444.(SC-G,IF4.568)

[17].Li Shunda, et al."Dissection of Genetic Basis Underpinning Kernel Weight-Related Traits in Common Wheat." Plants 10.4(2021): doi:10.3390/PLANTS10040713.(SC-G)

[18].Niu Xiaojun, et al."Dissection of two quantitative trait loci for grain length linked on the long arm of chromosome 5 in rice." Crop Science 61.6(2021): doi:10.1002/CSC2.20633.(SC-G,IF2.003)

[19].Dai Shutao, et al."Diversity and association analysis of important agricultural trait based on miniature inverted-repeat transposable element specific marker in Brassica napus L.." Oil Crop Science 6.1(2021): doi:10.1016/J.OCSCI.2021.03.004.(SC-G)

[20].Liu Jing, et al."Ectopic Expression of VRT-A2 Underlies the Origin of Triticum polonicum and T. petropavlovskyi with Long Outer Glume and Grain.." Molecular plant 14.9(2021): doi:10.1016/J.MOLP.2021.05.021.(SC-G,IF11.631)

[21].Li Lin, et al."Effects of nitrogen deep placement coupled with straw incorporation on grain quality and root traits from paddy fields." Crop Science 61.5(2021): doi:10.1002/CSC2.20578.(SC-E,IF2.003)

[22].Yang Desheng, et al."Effects of nitrogen fertilization for bud initiation and tiller growth on yield and quality of rice ratoon crop in central China." Field Crops Research 272.(2021): doi:10.1016/J.FCR.2021.108286.(SC-E,IF4.856)

[23].Li Bo, et al."Effects of Ridge Tillage and Straw Mulching on Cultivation the Fresh Faba Beans." Agronomy 11.6(2021): doi:10.3390/AGRONOMY11061054.(LA-S)

[24].Gao Runhong, et al."Enhancement of root architecture and nitrate transporter gene expression improves plant growth and nitrogen uptake under long-term low-nitrogen stress in barley (Hordeum vulgare L.) seedlings." Plant Growth Regulation 95.3(2021): doi:10.1007/S10725-021-00744-2.(LA-S,IF2.483)

[25].Sun, Guangyan, et al."Exogenous Hemin Optimized Maize Leaf Photosynthesis, Root Development, Grain Filling, and Resource Utilization on Alleviating Cadmium Stress Under Field Condition." Journal of Soil Science and Plant Nutrition .prepublish(2021): doi:10.1007/S42729-021-00674-Y.(IF2.516)

[26].Yuzhan Li, et al."Exogenous Melatonin and Catechol Application Modulate Physio-Biochemical Attributes and Early Growth of Fragrant Rice Under Cd Toxicity." Journal of Soil Science and Plant Nutrition .prepublish(2021): doi:10.1007/S42729-021-00521-0.(LA-S,IF2.516)

[27].Potcho Pouwedeou Mouloumdema, et al."Fertilizer Deep Placement Significantly Affected Yield, Rice Quality, 2-AP Biosynthesis and Physiological Characteristics of the Fragrant Rice Cultivars." Agronomy 12.1(2022): doi:10.3390/AGRONOMY12010162.(SC-E)

[28].Yuchun Rao, et al."Fine mapping and candidate gene analysis of leaf tip premature senescence and Dwarf Mutant dls-1 in Rice." Plant Growth Regulation .prepublish(2021): doi:10.1007/S10725-021-00715-7.(SC-G,IF2.483)

[29].Yuan Hua, et al."Fine mapping and candidate gene analysis of qGSN5, a novel quantitative trait locus coordinating grain size and grain number in rice.." TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 135.1(2021): doi:10.1007/S00122-021-03951-7.

[30].Zhao Dehui, et al."Fine mapping and validation of a major QTL for grain weight on chromosome 5B in bread wheat.." TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 134.11(2021): doi:10.1007/S00122-021-03925-9.(SC-G)

[31].Chen Jin Feng, et al."Fine-Tuning Roles of Osa-miR159a in Rice Immunity Against Magnaporthe oryzae and Development." Rice 14.1(2021): doi:10.1186/S12284-021-00469-W.(SC-A,IF4.072)

[32].Meng Tianyao, et al."Genetic Improvement of Post-Heading Root Morphology and Physiology Facilitating Yield Increase of japonica Inbred Rice." Agronomy 11.12(2021): doi:10.3390/AGRONOMY11122457.(LA-S)

[33].Qu Xiangru, et al."Genetic Mapping and Validation of Loci for Kernel-Related Traits in Wheat (Triticum aestivum L.) ." Frontiers in Plant Science 12.(2021): doi:10.3389/FPLS.2021.667493.(SC-A,IF4.568)

[34].Kang Yiwei, et al."Genetic Mapping of Grain Shape Associated QTL Utilizing Recombinant Inbred Sister Lines in High Yielding Rice (Oryza sativa L.)." Agronomy 11.4(2021): doi:10.3390/AGRONOMY11040705.

[35].Gao Le, et al."Genome–wide association study of grain morphology in wheat." Euphytica 217.8(2021): doi:10.1007/S10681-021-02900-1.(SC-A,IF1.697)

[36].Wang Aijun, et al."Genome-wide association study-based identification genes influencing agronomic traits in rice (Oryza sativa L.)." Genomics 113.prepublish(2021): doi:10.1016/J.YGENO.2021.03.016.(SC-G)

[37].Zhanying Zhang, et al."GNP6 , a novel allele of MOC1 , regulates panicle and tiller development in rice." The Crop Journal .prepublish(2020): doi:10.1016/j.cj.2020.04.011.(SC-G)

[38].Chen Lin, et al."Growth and Nitrogen Retranslocation of Nutrient-Loaded Clonal Betula alnoides Transplanted with or without Fertilization." Forests 12.11(2021): doi:10.3390/F12111603.(LA-S,IF2.317)

[39].Li Fei, et al."High-Quality Genomes and High-Density Genetic Map Facilitate the Identification of Genes From a Weedy Rice ." Frontiers in Plant Science 12.(2021): doi:10.3389/FPLS.2021.775051.(IF4.568)

[40].Zhang Youfu, et al."Identification and development of a KASP functional marker of TaTAP46‐5A associated with kernel weight in wheat (Triticum aestivum)." Plant Breeding 140.4(2021): doi:10.1111/PBR.12922.(SC-G,IF1.794)

[41].Ji Guangsi, et al."Identification of a major and stable QTL on chromosome 5A confers spike length in wheat (Triticum aestivum L.)." Molecular Breeding 41.9(2021): doi:10.1007/S11032-021-01249-6.(SC-E,IF2.208)

[42].Zhang Jinpeng, et al."Identification of Genetic Loci on Chromosome 4B for Improving the Grain Number per Spike in Pre-Breeding Lines of Wheat." Agronomy 12.1(2022): doi:10.3390/AGRONOMY12010171.(SC-E)

[43].Liang Dangdi, et al."Increasing the performance of Passion fruit (Passiflora edulis) seedlings by LED light regimes." Scientific Reports 11.1(2021): doi:10.1038/S41598-021-00103-1.(IF4.149)

[44].Li Zhenyi, et al."Integrative analysis of the metabolome and transcriptome reveal the phosphate deficiency response pathways of alfalfa." Plant Physiology and Biochemistry 170.(2022): doi:10.1016/J.PLAPHY.2021.11.039.(LA-S,IF3.983)

[45].Duan Yanan, et al."Isolation, Identification, and Antibacterial Mechanisms of Bacillus amyloliquefaciens QSB-6 and Its Effect on Plant Roots ." Frontiers in Microbiology 12.(2021): doi:10.3389/FMICB.2021.746799.(LA-S,IF4.443)

[46].Yang Yang, et al."Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat." Theoretical and Applied Genetics 134.9(2021): doi:10.1007/S00122-021-03881-4.(SC-E,IF4.643)

[47].Hei Zewen, et al."Mix-cropping of rice and water mimosa (Neptunia oleracea Lour.) increases rice photosynthetic efficiency, yield, grain quality and soil available nutrients.." Journal of the science of food and agriculture .(2021): doi:10.1002/JSFA.11744.(SC-E,IF2.802)

[48].Jiang Pingping, et al."Moderate Mn accumulation enhances growth and alters leaf hormone contents in the hyperaccumulator Celosia argentea Linn.." Environmental and Experimental Botany 191.prepublish(2021): doi:10.1016/J.ENVEXPBOT.2021.104603.(SC-E,IF4.173)

[49].Zhang Xia, et al."Molecular cytogenetic characterization of a novel wheat-Thinopyrum intermedium introgression line tolerant to phosphorus deficiency." The Crop Journal .prepublish(2020): doi:10.1016/J.CJ.2020.08.014.(LA-S)

[50].Sun ChenDong, et al."OsRLR4 binds to the OsAUX1 promoter to negatively regulate primary root development in rice.." Journal of integrative plant biology 64.1(2021): doi:10.1111/JIPB.13183.(LA-S,IF6.19)

[51].Liu, J. , et al. "QMrl-7B Enhances Root System, Biomass, Nitrogen Accumulation and Yield in Bread Wheat." Plants 10.4(2021):764.(LA-S)

[52].Ren Tianheng, et al."QTL Mapping and Validation for Kernel Area and Circumference in Common Wheat via High-Density SNP-Based Genotyping ." Frontiers in Plant Science 12.(2021): doi:10.3389/FPLS.2021.713890.(SC-G,IF4.568)

[53].Xu, H. , et al. "Quality Evaluation and Important Quality Genes Genotyping of Introduced Rice Germplasm Resources." Rice Genomics and Genetics (2021).(SC-E)

[54].Cheng Yan, Ya-li Leng,and Jun-ting Wu."Quantitative microbial risk assessment for occupational health of temporary entrants and staffs equipped with various grade PPE and exposed to microbial bioaerosols in two WWTPs." International Archives of Occupational and Environmental Health .prepublish(2021): doi:10.1007/S00420-021-01663-5.(HICC-B,IF2.118)

[55].Wang Can, et al."Responses of photosynthetic characteristics and dry matter formation in waxy sorghum to row ratio configurations in waxy sorghum-soybean intercropping systems." Field Crops Research 263.(2021): doi:10.1016/J.FCR.2021.108077.(SC-G,IF4.856)

[56].Li Yan, et al."Rice miR1432 Fine-Tunes the Balance of Yield and Blast Disease Resistance via Different Modules." Rice 14.1(2021): doi:10.1186/S12284-021-00529-1.

[57].Jian Shao Fen, et al."Sulfur Regulates the Trade-Off Between Growth and Andrographolide Accumulation via Nitrogen Metabolism in Andrographis paniculata ." Frontiers in Plant Science 12.(2021): doi:10.3389/FPLS.2021.687954.(LA-S,4.568)

[58].Mao Ting, et al."Superior japonica rice variety YJ144 with improved rice blast resistance, yield, and quality achieved using molecular design and multiple breeding strategies." Molecular Breeding 41.10(2021): doi:10.1007/S11032-021-01259-4.(IF2.208)

[59].Li Jihu, et al."TaNAC100 acts as an integrator of seed protein and starch synthesis conferring pleiotropic effects on agronomic traits in wheat.." The Plant journal : for cell and molecular biology 108.3(2021): doi:10.1111/TPJ.15485.(SC-G)

[60].Hwa, B , et al. "The boron transporter SiBOR1 functions in cell wall integrity, cellular homeostasis, and panicle development in foxtail millet." The Crop Journal (2021).(SC-G)

[61].Feng, Zhiyu, et al."The decreased expression of GW2 homologous genes contributed to the increased grain width and thousand‑grain weight in wheat-Dasypyrum villosum 6VS·6DL translocation lines." Theoretical and Applied Genetics 134.12(2021): doi:10.1007/S00122-021-03934-8.(IF4.643)

[62].Hao Jianqin, et al."The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice.." Molecular plant 14.8(2021): doi:10.1016/J.MOLP.2021.04.011.(IF11.631)

[63].Yue Wenjie, et al."The Landscape of Autophagy-Related (ATG) Genes and Functional Characterization of TaVAMP727 to Autophagy in Wheat." International Journal of Molecular Sciences 23.2(2022): doi:10.3390/IJMS23020891.(SC-G,IF4.602)

[64].Ji Chen, et al."The O2-ZmGRAS11 transcriptional regulatory network orchestrates the coordination of endosperm cell expansion and grain filling in maize.." Molecular plant .(2021): doi:10.1016/J.MOLP.2021.11.013.(IF11.631)

[65].Li Yan, et al."The rice miR171b–SCL6-IIs module controls blast resistance, grain yield, and flowering." The Crop Journal 10.1(2022): doi:10.1016/J.CJ.2021.05.004.(SC-A)

[66].Li Huan, et al."Unraveling hydrogen sulfide-promoted lateral root development and growth in mangrove plant Kandelia obovata: Insight into regulatory mechanism by TMT-based quantitative proteomic approaches.." Tree physiology 41.9(2021): doi:10.1093/TREEPHYS/TPAB025.(LA-S,IF3.364)

[67].Liu Jiajia, et al."A promising crop for cadmium-contamination remediation: Broomcorn millet.." Ecotoxicology and environmental safety 224.(2021): doi:10.1016/J.ECOENV.2021.112669.(LA-S,IF5.248)

[68].Shi, Cai Yun, et al."Comparison of drought resistance of rootstocks 'M9-T337' and 'M26' grafted with 'Huashuo' apple." Horticulture, Environment, and Biotechnology .prepublish(2022): doi:10.1007/S13580-021-00398-Z.(IF1.776)

[69].Wang Xiaoqi, et al."Comprehensive Analysis of the Influence of Fulvic Acid from Paper Mill Effluent on Soil Properties, Soil Microbiome, and Growth of Malus hupehensis Rehd. Seedlings under Replant Conditions.." ACS omega 6.37(2021): doi:10.1021/ACSOMEGA.1C03201.(LA-S)

[70]. Zhu, L. , et al. "Development and Application of an in Vitro Method to Evaluate Anthracnose Resistance in Soybean Germplasm." (2021).(LA-S)

[71].Qi Kai, et al."Development and characterization of novel Triticum aestivum-Agropyron cristatum 6P Robertsonian translocation lines." Molecular Breeding 41.10(2021): doi:10.1007/S11032-021-01251-Y.(IF2.208)

[72].Zheng Shilu, et al."Disentangling biotic and abiotic drivers of intraspecific trait variation in woody plant seedlings at forest edges." Ecology and Evolution 11.14(2021): doi:10.1002/ECE3.7799.(LA-S,IF2.621)

[73].Liu Dapu, et al."Diversification of plant agronomic traits by genome editing of brassinosteroid signaling family genes in rice.." Plant physiology 187.4(2021): doi:10.1093/PLPHYS/KIAB394.(SC-G,IF7.444)

[74].Jin Meifang, et al."Effect of copper on the photosynthesis and growth of Eichhornia crassipes.." Plant biology (Stuttgart, Germany) 23.5(2021): doi:10.1111/PLB.13281.(LA-S)

[75].Hao Hao-xin, et al."Erosion-reducing effects of plant roots during concentrated flow under contrasting textured soils." Catena 203.(2021): doi:10.1016/J.CATENA.2021.105378.(LA-S,IF4.882)

[76].Yuzhan Li, et al."Exogenous Melatonin and Catechol Application Modulate Physio-Biochemical Attributes and Early Growth of Fragrant Rice Under Cd Toxicity." Journal of Soil Science and Plant Nutrition .prepublish(2021): doi:10.1007/S42729-021-00521-0.(LA-S,IF2.516)

[77].Yang Weifeng, et al."Fine mapping of two grain chalkiness QTLs sensitive to high temperature in rice." Rice 14.1(2021): doi:10.1186/S12284-021-00476-X.(SC-E)

[78].Li Tao, et al."Identification and Validation of a Novel Locus Controlling Spikelet Number in Bread Wheat (Triticum aestivum L.) ." Frontiers in Plant Science .(2021): doi:10.3389/FPLS.2021.611106.(SC-G,IF4.568)

[79].Chen Weili, et al."Arbuscular Mycorrhizal Fungus Alters Root System Architecture in Camellia sinensis L. as Revealed by RNA-Seq Analysis ." Frontiers in Plant Science 12.(2021): doi:10.3389/FPLS.2021.777357.(LA-S,IF4.568)

[80].Zheng Yaxiong, et al."Functional Trait Responses to Strip Clearcutting in a Moso Bamboo Forest." Forests 12.6(2021): doi:10.3390/F12060793.(LA-S,IF2.317)

[81].Li Tao, et al."Genetic dissection of quantitative trait loci for grain size and weight by high-resolution genetic mapping in bread wheat (Triticum aestivum L.).." TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 135.1(2021): doi:10.1007/S00122-021-03964-2.(SC-G)

[82].Chen, Shiliang, et al."Genetic loci and responsible genes for pod and seed traits under diverse environments via linkage mapping analysis in soybean [Glycine max (L.) Merr.]." Genetic Resources and Crop Evolution .prepublish(2021): doi:10.1007/S10722-021-01287-1.(IF1.211)

[83].Zhao Xinpeng, et al."Genome-wide association study of grain shapes in Aegilops tauschii." Euphytica 217.7(2021): doi:10.1007/S10681-021-02877-X.(SC-G,IF1.697)

[84].Sun Mingjie, et al."Genotypic diversity of quality traits in Chinese foxtail millet (Setaria italica L.) and the establishment of a quality evaluation system." Food Chemistry 353.(2021): doi:10.1016/J.FOODCHEM.2021.129421.(SC-E)

[85].Sun, Yangyang , et al. "Identification and fine mapping of alien fragments associated with enhanced grain weight from Agropyron cristatum chromosome 7P in common wheat backgrounds." Theoretical and Applied Genetics 5(2021).(SC-G,IF4.643)

[86].Li Tao, et al."Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits.." TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 134.11(2021): doi:10.1007/S00122-021-03918-8.(SC-G)

[87].Niu Yanan, et al."Identification and allele mining of new candidate genes underlying rice grain weight and grain shape by genome-wide association study.." BMC genomics 22.1(2021): doi:10.1186/S12864-021-07901-X.(SC-G,IF3.675)

[88].Imaged-based phenotyping accelerated QTL mapping and qtl×environment interaction analysis of testa colour in peanut (Arachis hypogaea). Plant Breeding (2021).(SC-G,IF1.794)

[89].Raboanatahiry Nadia, et al."In Silico Analysis of Fatty Acid Desaturases Structures in Camelina sativa, and Functional Evaluation of Csafad7 and Csafad8 on Seed Oil Formation and Seed Morphology." International Journal of Molecular Sciences 22.19(2021): doi:10.3390/IJMS221910857.(SC-G,IF4.602)

[90].Peng Yan, et al."Influence of physicochemical properties and starch fine structure on the eating quality of hybrid rice with similar apparent amylose content." Food Chemistry 353.(2021): doi:10.1016/J.FOODCHEM.2021.129461.(SC-E,IF6.81)

[91].Zhou Yun, et al."Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement.." Nature plants 7.6(2021): doi:10.1038/S41477-021-00934-W.(SC-G)

[92].Hu Zhanqiang, et al."Kinetics of water absorption expansion of rice during soaking at different temperatures and correlation analysis upon the influential factors.." Food chemistry 346.(2020): doi:10.1016/J.FOODCHEM.2020.128912.(SC-E,IF6.81)

[93].Ji, G. , et al. "Leaf surface characteristics affect the deposition and distribution of droplets in rice (Oryza sativa L.)." Scientific Reports 11.1(2021):17846.(LA-S,IF4.149)

[94].Ma Lin, et al."Melatonin and Nitrogen Applications Modulate Early Growth and Related Physio-biochemical Attributes in Maize Under Cd Stress." Journal of Soil Science and Plant Nutrition 21.2(2021): doi:10.1007/S42729-021-00415-1.(LA-S,IF2.516)

[95].Sun Yaqian, et al."Mining of quantitative trait loci and candidate genes for seed size and shape across multiple environments in soybean (Glycine max)." Plant Breeding 140.6(2021): doi:10.1111/PBR.12968.(SC-G,IF1.794)

[96].Jiang Pingping, et al."Moderate Mn accumulation enhances growth and alters leaf hormone contents in the hyperaccumulator Celosia argentea Linn.." Environmental and Experimental Botany 191.prepublish(2021): doi:10.1016/J.ENVEXPBOT.2021.104603.(LA-S,IF4.173)

[97].Huang Yuzhou, et al."New Insights into the Microplastic Enrichment in the Blue Carbon Ecosystem: Evidence from Seagrass Meadows and Mangrove Forests in Coastal South China Sea.." Environmental science & technology 55.8(2021): doi:10.1021/ACS.EST.0C07289.(AlgaeC,IF8.25)

[98].Huang Xiaorui, et al."Novel Wx alleles generated by base editing for improvement of rice grain quality.." Journal of integrative plant biology 63.9(2021): doi:10.1111/JIPB.13098.(SC-A,IF6.19)

[99].Zhu Xiuliang, et al."Overexpression of TaSTT3b-2B improves resistance to sharp eyespot and increases grain weight in wheat.." Plant biotechnology journal .(2021): doi:10.1111/PBI.13760.(SC-G,8.738)

[100].Qian Mingchao, et al."Petal size in rapeseed: novel QTL and candidate genes detected through genome-wide association study and transcriptome comparison.." Journal of experimental botany 72.10(2021): doi:10.1093/JXB/ERAB105.(LA-S,IF5.557)

[101].Kaseb Mohamed Omar, et al."Physio-Anatomical Study of Polyploid Watermelon Grafted by Different Methods." Agronomy 11.5(2021): doi:10.3390/AGRONOMY11050913.(LA-S)

[102].Wu Zhiyong, et al."Physiological and transcriptomic analyses of brassinosteroid function in kiwifruit root." Environmental and Experimental Botany 194.(2022): doi:10.1016/J.ENVEXPBOT.2021.104685.(LA-S,IF4.173)

[103].Liu, J. , et al. "QMrl-7B Enhances Root System, Biomass, Nitrogen Accumulation and Yield in Bread Wheat." Plants 10.4(2021):764.(SC-G)

[104].Zhang Dazhong, et al."Root characteristics critical for cadmium tolerance and reduced accumulation in wheat (Triticum aestivum L.).." Journal of environmental management 305.(2021): doi:10.1016/J.JENVMAN.2021.114365.(IF6.243)

[105].Wang, C. , et al. "Sedimentary Organic Matter Load Influences the Ecological Effects and Potential Risks of Submerged Macrophyte Restoration Through Rhizosphere Metabolites." (2021).(LA-S)

[106].Stable pleiotropic loci and candidate genes for fresh pod- and seed-related characteristics across multiple environments in soybean (Glycine max). Plant Breeding (2021).(SC-G,IF1.794)

[107].Yang Weifeng, et al."Substitution Mapping of Two Closely Linked QTLs on Chromosome 8 Controlling Grain Chalkiness in Rice.." Rice (New York, N.Y.) 14.1(2021): doi:10.1186/S12284-021-00526-4.(SC-E)

[108].Jia Meiling, et al."TaIAA21 represses TaARF25-mediated expression of TaERFs required for grain size and weight development in wheat.." The Plant journal : for cell and molecular biology 108.6(2021): doi:10.1111/TPJ.15541.

[109].Fan Weijuan, et al."The H+-pyrophosphatase IbVP1 regulates carbon flux to influence the starch metabolism and yield of sweet potato." Horticulture Research 8.1(2021): doi:10.1038/S41438-020-00454-2.(LA-S,IF6.793)

[110].Huang Luojiang, et al."The LARGE2-APO1/APO2 regulatory module controls panicle size and grain number in rice.." The Plant cell 33.4(2021): doi:10.1093/PLCELL/KOAB041.(SC-G,IF11.277)

[111].Luo Guangbin, et al."The MYB family transcription factor TuODORANT1 from Triticum urartu and the homolog TaODORANT1 from Triticum aestivum inhibit seed storage protein synthesis in wheat.." Plant biotechnology journal 19.9(2021): doi:10.1111/PBI.13604.(SC-G,IF9.803)

[112].Gao Xiuying, et al."The phosphoproteomic and interactomic landscape of qGL3/OsPPKL1-mediated brassinosteroid signaling in rice.." The Plant journal : for cell and molecular biology .(2021): doi:10.1111/TPJ.15613.

[113].Li Yuying, et al."Transcription Factor TaWRKY51 Is a Positive Regulator in Root Architecture and Grain Yield Contributing Traits ." Frontiers in Plant Science 12.(2021): doi:10.3389/FPLS.2021.734614.(SC-G,IF5.753)

[114].Ming-Yue Wei, et al."Transcriptomic Analyses Reveal the Effect of Nitric Oxide on the Lateral Root Development and Growth of Mangrove Plant Kandelia Obovata".Research Square.2021.10.21203/rs.3.rs-894970/v1.(LA-S)

[115].Xin Guan, Qun Li, Tusunniyaze Maimaiti, Suke Lan, Peng Ouyang, Bowei Ouyang, Xian Wu, Sheng-Tao Yang,Toxicity and photosynthetic inhibition of metal-organic framework MOF-199 to pea seedlings,Journal of Hazardous Materials,Volume 409,2021,124521,ISSN 0304-3894,https://doi.org/10.1016/j.jhazmat.2020.124521.

[116].Xu H.S., He W., Zhou L., Liu K., Yang X.L., and You A.Q., 2021, Rice quality evaluate and key quality genes genotyping of rice germplasm from Africa and Brazil, Rice Genomics and Genetics, 12(5): 1-8 (doi: 10.5376/rgg.2021.12.0005).(SC-E)

[117].Jia-xin Ma, Bei-bei Cui, Man-li Liu, Jie Yuan, Cheng Yan.Quantitative Health Risk Assessment of Wastewater Treatment Plant Worker Exposed to Staphylococcus Aureus Bioaerosol During Warm and Cold Periods: Disease Burden and Sensitivity Analysis..Research Square.2021.10.21203/rs.3.rs-1070258/v1.(HiCC)

[118].Xiuying Gao, Jiaqi Zhang, Guang Cai, Huaying Du, Jianbo Li, Ruqin Wang, Yuji Wang, Jing Yin, Wencai Zhang, Hongsheng Zhang, Ji Huang, qGL3/OsPPKL1 induces phosphorylation of 14-3-3 protein OsGF14b to inhibit OsBZR1 function in brassinosteroid signaling, Plant Physiology, Volume 188, Issue 1, January 2022, Pages 624–636, https://doi.org/10.1093/plphys/kiab484.

[119].Laibao Feng,et al.Mapping causal genes and genetic interactions for agronomic traits using a large F2 population in rice.G3, 2021, 11(11), jkab318.DOI: 10.1093/g3journal/jkab318.(SC-E)

[120].Huang, M., Cao, J., Liu, Y., Zhang, M., Hu, L., Xiao, Z., Chen, J., & Cao, F. (2021). Low-temperature stress during the flowering period alters the source–sink relationship and grain quality in field-grown late-season rice. Journal of Agronomy and Crop Science, 207, 833–839. https://doi.org/10.1111/jac.12542.(SC-E)

[121].GAO Hua-wei. et al.Identification of petiole length for soybean compact architecture mutant M657 and breeding of new line.Journal of Integrative Agriculture.2021.Doi: 10.1016/S2095-3119(21)63702-4.(SC-E)

[122].Piyi Xing, et al."High-Resolution Detection of Quantitative Trait Loci for Seven Important Yield Components in Wheat (Triticum aestivum L.) using a High-Density SALF-Seq Genetic Map".Research Square.2021.10.21203/rs.3.rs-783221/v1

[123].Piyi Xing, et al."Genome-Wide Association Study Identified Novel Genomic Loci Controlling Internode Lengths and Plant Height in Common Wheat under Different Nitrogen Treatments".Research Square.2021.10.21203/rs.3.rs-901017/v1

[124].Baojian Guo, Jiang Qi, Dongfang Li, Hongwei Sun, Chao Lyu, Feifei Wang, Juan Zhu, Ganggang Guo, Rugen Xu,Genetic analysis and gene mapping of a dwarf and liguleless mutation in barley,The Crop Journal,2022,ISSN 2214-5141,https://doi.org/10.1016/j.cj.2022.01.006.(SC-G)

[125].Yang, H.; Yang, Q.; Kang, Y.; Zhang, M.; Zhan, X.; Cao, L.; Cheng, S.; Wu, W.; Zhang, Y. Finding Stable QTL for Plant Height in Super Hybrid Rice. Agriculture 2022, 12, 165. https://doi.org/10.3390/agriculture12020165.

[126].Zhang, J., Jiao, X., Du, Q. et al. Effects of Vapor Pressure Deficit and Potassium Supply on Root Morphology, Potassium Uptake, and Biomass Allocation of Tomato Seedlings. J Plant Growth Regul 40, 509–518 (2021). https://doi.org/10.1007/s00344-020-10115-2.(LA-S)

[127].Huang, Jinpeng, et al.Natural Variation of BRD2 Allele Plays an Important Role in the Plant Height and Grain Size. Available at SSRN: https://ssrn.com/abstract=3983811 or http://dx.doi.org/10.2139/ssrn.3983811.(SC-G)

[128].D.T. GAO, et al."Drought tolerance monitoring of apple rootstock M.9-T337 based on infrared and fluorescence imaging".PHOTOSYNTHETICA 59 (SI): 458-467, 2021.10.32615/ps.2021.035.(LA-S)

[129].Manman Liu, et al."Creation of Elite Rice With High-yield, Superior-quality and Strong Resistance to Brown Planthopper Based on Molecular Design".Research Square.2021.10.21203/rs.3.rs-992897/v1.(LA-S)

[130].Duan Yanan, et al."Biocontrol Potential of The Phloridin-Degrading Bacillus Licheniformis XNRB-3 Against Apple Replant Disease".Research Square.2021.10.21203/rs.3.rs-1039511/v1.(LA-S)

[131].Wan, Lian-Jie, Yang Tian, Man He, Yong-Qiang Zheng, Qiang Lyu, Rang-Jin Xie, Yan-Yan Ma, Lie Deng, and Shi-Lai Yi. 2021. "Effects of Chemical Fertilizer Combined with Organic Fertilizer Application on Soil Properties, Citrus Growth Physiology, and Yield" Agriculture 11, no. 12: 1207. https://doi.org/10.3390/agriculture11121207

[132].黃曉瑞. 編輯水稻中Waxy基因調(diào)節(jié)稻米品質(zhì)的研究[D].山東師范大學(xué),2021.DOI:10.27280/d.cnki.gsdsu.2021.000116.

[133].MOHAMED OMAR MOHAMED HUSSEIN KASEB. 不同倍性西瓜嫁接愈合的分子生理機(jī)制研究[D].中國(guó)農(nóng)業(yè)科學(xué)院,2021.DOI:10.27630/d.cnki.gznky.2021.000142.

[134].丁崌平. 不同溫度下水汽壓差對(duì)番茄光合特性及營(yíng)養(yǎng)吸收的影響[D].西北農(nóng)林科技大學(xué),2021.DOI:10.27409/d.cnki.gxbnu.2021.000599.

[135].陳春. 片段化生境中常見植物檵木和短尾越橘種內(nèi)葉功能性狀研究[D].浙江大學(xué),2021.DOI:10.27461/d.cnki.gzjdx.2021.002210.

[136].唐詩(shī)聞. 水稻突變體zsd11和lmm3的表型鑒定及其候選基因分析[D].西南科技大學(xué),2021.DOI:10.27415/d.cnki.gxngc.2021.000263.

[137].雷昌菊,戴小英,伍艷芳,劉新亮,鄭永杰,符潮.3種楠屬植物形態(tài)及顯微特征分析[J].南方林業(yè)科學(xué),2021,49(06):4-7+31.DOI:10.16259/j.cnki.36-1342/s.2021.06.002.

[138].李照杰. 23個(gè)油菜品種產(chǎn)油量和倒伏抗性鑒定與綜合性能評(píng)價(jià)[D].西北農(nóng)林科技大學(xué),2021.DOI:10.27409/d.cnki.gxbnu.2021.001509.

[139].李傳廣,付沙,李峰,溫亮,劉士峰,程云吉,顏石,公愛琴,張麗,侯欣.28-高蕓苔素內(nèi)酯對(duì)烤煙幼苗生長(zhǎng)發(fā)育的影響[J].山東農(nóng)業(yè)科學(xué),2021,53(08):107-111.DOI:10.14083/j.issn.1001-4942.2021.08.019.

[140].馬國(guó)江,馬靖福,張沛沛,劉媛,陳濤,楊德龍.128份抗旱冬小麥新品系農(nóng)藝性狀遺傳多樣性分析[J].甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2021,56(03):37-44.DOI:10.13432/j.cnki.jgsau.2021.03.006.

[141].張紅杰. 152份合成小麥產(chǎn)量相關(guān)性狀全基因組關(guān)聯(lián)分析[D].山西大學(xué),2021.DOI:10.27284/d.cnki.gsxiu.2021.000030.

[142].儲(chǔ)零逸. AP2/ERF轉(zhuǎn)錄因子OsERF44調(diào)控水稻穗發(fā)芽的效應(yīng)及其機(jī)制研究[D].揚(yáng)州大學(xué),2021.DOI:10.27441/d.cnki.gyzdu.2021.001857.

[143].郭寧. BnVIK和BnNAC13調(diào)控油菜種子含油量的功能研究[D].華中農(nóng)業(yè)大學(xué),2021.DOI:10.27158/d.cnki.ghznu.2021.000374.

[144].黎詩(shī)艷,阮景軍,范昱,周美亮,王俊珍,李發(fā)良,程劍平.EMS誘變劑處理對(duì)苦蕎種子萌發(fā)及主要農(nóng)藝性狀的影響[J].分子植物育種,2021,19(03):914-922.DOI:10.13271/j.mpb.019.000914.

[145].徐珊珊,劉小金,徐大平,洪舟,郭俊譽(yù),楊曾獎(jiǎng).IAA和NAA對(duì)降香黃檀扦插繁殖的影響[J].林業(yè)科學(xué)研究,2021,34(05):168-176.DOI:10.13275/j.cnki.lykxyj.2021.005.020.

[146].牛小軍. qGS5.1和qGS5.2對(duì)水稻粒重和粒形的遺傳控制作用[D].華中農(nóng)業(yè)大學(xué),2021.DOI:10.27158/d.cnki.ghznu.2021.000135.

[147].李志永. SRN1-Tre6P-SnRK1正向調(diào)控回路協(xié)調(diào)水稻源-庫(kù)碳源分配的機(jī)制研究[D].華中農(nóng)業(yè)大學(xué),2021.DOI:10.27158/d.cnki.ghznu.2021.000206.

[148].宋麗雙. 澳洲野生稻與亞洲栽培稻種間雜種后代的篩選和鑒定[D].揚(yáng)州大學(xué),2021.DOI:10.27441/d.cnki.gyzdu.2021.001780.

[149].梁芳,檀小輝,鄧旭,吳玉霜,吳敏,楊香春,李金玲.半紅樹植物玉蕊對(duì)淹水-鹽度脅迫的生長(zhǎng)及生理響應(yīng)[J].廣西植物,2021,41(06):872-882.

[150].劉杰,吳國(guó)瑞,張金偉,孫周平.保健型中藥渣基質(zhì)對(duì)日光溫室袋培番茄產(chǎn)量及品質(zhì)的影響[J].核農(nóng)學(xué)報(bào),2021,35(07):1687-1695.

[151].蔣偉勤. 缽苗機(jī)插優(yōu)質(zhì)食味遲熟中粳稻控混肥一次性施用效應(yīng)研究[D].揚(yáng)州大學(xué),2021.DOI:10.27441/d.cnki.gyzdu.2021.001381.

[152].蔡曉惠. 播期對(duì)關(guān)中地區(qū)冬油菜籽粒產(chǎn)量和品質(zhì)的影響[D].西北農(nóng)林科技大學(xué),2021.DOI:10.27409/d.cnki.gxbnu.2021.001520.

[153].李照杰,蔡曉惠,吳偉.不同播期對(duì)油菜產(chǎn)量及根系電容值的影響[J].西北農(nóng)業(yè)學(xué)報(bào),2021,30(09):1321-1330.

[154].郝鳳,于鐵峰,劉曉靜,高凱.不同氮效率型苜蓿氮素吸收差異與根系形態(tài)的關(guān)系及其對(duì)氮的響應(yīng)[J].草地學(xué)報(bào),2021,29(11):2428-2434.

[155].于洋. 不同氮效率玉米對(duì)供氮的響應(yīng)特征及轉(zhuǎn)錄組蛋白質(zhì)組分析[D].東北農(nóng)業(yè)大學(xué),2021.DOI:10.27010/d.cnki.gdbnu.2021.000034.

[156].曲文蕊,韓曉莉,翟軍團(tuán),李志軍.不同發(fā)育階段胡楊、灰楊異形葉形態(tài)結(jié)構(gòu)變化特征[J].塔里木大學(xué)學(xué)報(bào),2021,33(02):14-24.

[157].吳元華,高華軍,劉好寶,馬興華.不同規(guī)格育苗盤的雪茄煙煙苗生長(zhǎng)差異及對(duì)干旱脅迫的響應(yīng)[J].江蘇農(nóng)業(yè)科學(xué),2021,49(16):101-106.DOI:10.15889/j.issn.1002-1302.2021.16.018.

[158].付正豪. 不同機(jī)插方式下控釋肥配比對(duì)遲熟中粳水稻產(chǎn)量及稻米品質(zhì)的影響[D].揚(yáng)州大學(xué),2021.DOI:10.27441/d.cnki.gyzdu.2021.001094.

[159].李俊杰,杜蒲芳,石婷瑞,侯沛佳,柴新宇,趙瑞,汪妤,李紅霞.不同基因型小麥苗期耐低氮性評(píng)價(jià)及篩選[J].中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2021,23(07):21-32.DOI:10.13304/j.nykjdb.2020.0927.

[160].熊潔,丁戈,陳倫林,李書宇,鄒小云,黃楊,宋來強(qiáng).不同基因型油菜耐鋁性及其根系形態(tài)對(duì)鋁脅迫的響應(yīng)[J].中國(guó)油料作物學(xué)報(bào),2021,43(04):673-682.DOI:10.19802/j.issn.1007-9084.2020073.

[161].徐誠(chéng),楊建超,楊鴻基,楊平,軒正英,張娟.不同基質(zhì)配比對(duì)黃瓜穴盤育苗的影響[J].陜西農(nóng)業(yè)科學(xué),2021,67(06):38-41.

[162].韓麗君,陳思,周帥,郝向春.不同基質(zhì)配方對(duì)遼東櫟容器苗生長(zhǎng)的影響[J].林業(yè)科技通訊,2021(10):45-48.DOI:10.13456/j.cnki.lykt.2020.11.16.0003.

[163].盧廣. 不同來源大麥的進(jìn)化關(guān)系及其受選擇代謝物的分化機(jī)理[D].華中農(nóng)業(yè)大學(xué),2021.DOI:10.27158/d.cnki.ghznu.2021.000495.

[164].許芳維. 不同密度玉米與苜蓿間作對(duì)玉米生產(chǎn)潛能的研究[D].東北農(nóng)業(yè)大學(xué),2021.

[165].于玉梅,嚴(yán)青青.不同品種海島棉苗期根系耐鹽堿性比較[J].農(nóng)村科技,2021(04):16-17.DOI:10.19777/j.cnki.issn1002-6193.2021.04.006.

[166].賈廷偉,江曉林,劉艷陽,崔承齊,杜俊偉,杜振偉,武軻,梅鴻獻(xiàn),鄭永戰(zhàn).不同品種類型芝麻品質(zhì)性狀的比較分析[J].中國(guó)油脂,2021,46(08):81-86.DOI:10.19902/j.cnki.zgyz.1003-7969.210216.

[167].何玉友,陳雙林,郭子武,張瑋,汪舍平.不同棄管年限毛竹林立竹葉片功能性狀的變化特征[J].福建農(nóng)林大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,50(05):641-648.DOI:10.13323/j.cnki.j.fafu(nat.sci.).2021.05.010.

[168].倪勝利,何瑞,劉媛,張沛沛,李興茂,楊德龍.不同水分條件下小麥粒重QTL定位及其元分析[J].甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2021,56(03):45-54.DOI:10.13432/j.cnki.jgsau.2021.03.007.

[169].康佳惠,梁秀芝,鄭敏娜,韓志順,陳燕妮.不同外源氮素形態(tài)對(duì)紫花苜蓿根系的影響[J].山西農(nóng)業(yè)科學(xué),2021,49(04):467-471.

[170].王胤,姚瑞玲.不同形態(tài)氮素配比對(duì)馬尾松組培苗生長(zhǎng)的影響[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2021,41(03):18-24+71.DOI:10.14067/j.cnki.1673-923x.2021.03.003.

[171].田雅楠,曹玲玲,趙立群,曹彩紅.不同營(yíng)養(yǎng)液配方對(duì)番茄潮汐式灌溉育苗質(zhì)量的影響[J].中國(guó)果菜,2021,41(09):83-87.DOI:10.19590/j.cnki.1008-1038.2021.09.015.

[172].厲廣輝,王興軍,張斌,藺儒俠,侯蕾.不同油莎豆品種在山東種植的產(chǎn)量與品質(zhì)研究[J].山東農(nóng)業(yè)科學(xué),2021,53(03):61-64.DOI:10.14083/j.issn.1001-4942.2021.03.011.

[173].郝向春,周帥,韓麗君,翟瑜,陳天成.不同種源遼東櫟種子和幼樹指標(biāo)變異及相關(guān)分析[J].植物資源與環(huán)境學(xué)報(bào),2021,30(04):1-11.

[174].歐文慧. 常見真水生植物功能性狀變異與環(huán)境適應(yīng)[D].湖北大學(xué),2021.DOI:10.27130/d.cnki.ghubu.2021.000494.

[175].張毛寧,黃冰艷,苗利娟,徐靜,石磊,張忠信,孫子淇,劉華,齊飛艷,董文召,鄭崢,張新友.巢式雜交分離群體的花生籽仁性狀的主基因+多基因混合遺傳模型分析[J].中國(guó)農(nóng)業(yè)科學(xué),2021,54(13):2916-2939.

[176].張毛寧,張新友,孫子淇,黃冰艷,劉華,徐靜,張忠信,齊飛艷,董文召.巢式雜交群體的花生莢果性狀遺傳模型分析[J].中國(guó)油料作物學(xué)報(bào),2021,43(04):573-581.DOI:10.19802/j.issn.1007-9084.2020247.

[177].藍(lán)雅華. 成品散卵一代雜交蠶種的均勻性評(píng)價(jià)研究[D].浙江大學(xué),2021.DOI:10.27461/d.cnki.gzjdx.2021.001740.

[178].王若輝,鄭悅雯,吳書天,沈丹玉,莫潤(rùn)宏,倪張林,劉毅華.儲(chǔ)藏溫度對(duì)干核桃品質(zhì)的影響效應(yīng)[J].中國(guó)糧油學(xué)報(bào),2021,36(10):131-137.

[179].張業(yè)倫,孟雅寧,呂亮杰,梁丹,羅巧玲,蘭素缺,張凱,何飛飛,蘭彩霞,李杏普.春小麥千粒重相關(guān)性狀的QTL定位及其耐熱性分析[J].植物遺傳資源學(xué)報(bào),2021,22(01):83-94.DOI:10.13430/j.cnki.jpgr.20200301001.

[180].劉新亮,戴小英,章挺,吳巧花,江斌,唐星林.大量元素缺乏對(duì)樟樹幼苗生長(zhǎng)的影響[J].南方林業(yè)科學(xué),2021,49(05):16-20.DOI:10.16259/j.cnki.36-1342/s.2021.05.004.

[181].王瑞. 氮素對(duì)油茶苗木生長(zhǎng)的影響研究[D].中南林業(yè)科技大學(xué),2021.DOI:10.27662/d.cnki.gznlc.2021.000003.

[182].楊建超. 氮素指數(shù)施肥處理對(duì)設(shè)施甜瓜生長(zhǎng)及養(yǎng)分承載的影響[D].塔里木大學(xué),2021.DOI:10.27708/d.cnki.gtlmd.2021.000219.

[183].田孝志,徐龍曉,宋建飛,荀咪,張瑋瑋,楊洪強(qiáng).稻殼炭對(duì)緊實(shí)土壤中蘋果根系硫同化酶活性、H_2S含量及根系構(gòu)型的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2021,27(05):869-877.

[184].饒文婷. 稻米外觀品質(zhì)和食味品質(zhì)相關(guān)性狀QTL定位及其效應(yīng)驗(yàn)證[D].華中農(nóng)業(yè)大學(xué),2021.DOI:10.27158/d.cnki.ghznu.2021.000736.

[185].劉合芹,陳合云,張小明,鄒桂花,鄭學(xué)強(qiáng),劉秀慧.地方種質(zhì)資源東陽紅粟的調(diào)查收集與鑒定評(píng)價(jià)[J].浙江農(nóng)業(yè)科學(xué),2021,62(04):678-680.DOI:10.16178/j.issn.0528-9017.20210411.

[186].張璇. 電容法和rDNA濃度法估測(cè)小麥根系性狀的研究[D].西北農(nóng)林科技大學(xué),2021.

[187].盧林. 電子舌多傳感陣列信息交互及秈稻米食味量化研究[D].浙江工商大學(xué),2021.DOI:10.27462/d.cnki.ghzhc.2021.000004.

[188].范鍇. 鄂爾多斯沙地栽培苜蓿根系形態(tài)及生理特性的研究[D].中國(guó)農(nóng)業(yè)科學(xué)院,2021.DOI:10.27630/d.cnki.gznky.2021.000817.

[189].張靜亞. 番茄IAA甲基轉(zhuǎn)移酶基因SlIAMT對(duì)胚軸伸長(zhǎng)和根系發(fā)育的調(diào)控[D].中國(guó)農(nóng)業(yè)科學(xué)院,2021.DOI:10.27630/d.cnki.gznky.2021.000319.

[190].徐巍. 番茄低溫下矮化壞死調(diào)控基因ndw的克隆及功能鑒定[D].石河子大學(xué),2021.DOI:10.27332/d.cnki.gshzu.2021.000013.

[191].徐欣韻,王寧,丁佳,陳妍,田光明.番茄青枯病拮抗菌的定向篩選及其抗病促生機(jī)制研究[J].微生物學(xué)報(bào),2021,61(10):3276-3290.DOI:10.13343/j.cnki.wsxb.20210033.

[192].楊瑩瑩. 非洲栽培稻基因滲入系重要農(nóng)藝性狀QTL分析及qHD6的精細(xì)定位[D].中國(guó)農(nóng)業(yè)科學(xué)院,2021.DOI:10.27630/d.cnki.gznky.2021.000686.

[193].于國(guó)琦. 肥料運(yùn)籌對(duì)大麥產(chǎn)量和品質(zhì)的影響研究[D].揚(yáng)州大學(xué),2021.DOI:10.27441/d.cnki.gyzdu.2021.000550.

[194].李格格. 分蘗期干旱脅迫對(duì)不同抗旱性水稻根際微生物群落的影響及其機(jī)制[D].西北農(nóng)林科技大學(xué),2021.DOI:10.27409/d.cnki.gxbnu.2021.000218.

[195].徐森,谷瑞,陳雙林,郭子武,楊麗婷.覆蓋下雷竹筍籜葉性狀和食味品質(zhì)的變化及其相關(guān)性[J].林業(yè)科學(xué),2021,57(09):34-41.

[196].張曉暉. 甘藍(lán)型油菜粒重主效QTL qSW.C9精細(xì)定位及候選基因BnaC9.RINGb功能分析[D].華中農(nóng)業(yè)大學(xué),2021.DOI:10.27158/d.cnki.ghznu.2021.000188.

[197].燕佳琦. 甘藍(lán)型油菜種質(zhì)資源農(nóng)藝與抗逆性狀的評(píng)價(jià)及優(yōu)異種質(zhì)篩選[D].西北農(nóng)林科技大學(xué),2021.

[198].劉家材. 高鉀水溶肥對(duì)設(shè)施草莓生長(zhǎng)發(fā)育和果實(shí)品質(zhì)的影響[D].塔里木大學(xué),2021.

[199].白瑤. 根系特征對(duì)小麥氮效率的影響[D].西北農(nóng)林科技大學(xué),2021.DOI:10.27409/d.cnki.gxbnu.2021.001817.

[200].梁悅. 供氮水平和氮肥形態(tài)對(duì)棉花生長(zhǎng)發(fā)育及養(yǎng)分吸收的影響[D].新疆農(nóng)業(yè)大學(xué),2021.

[201].徐一荻,劉春花,謝富,王陽,胡凱紅,張建良,張銳.供磷水平對(duì)核桃實(shí)生苗生長(zhǎng)生理特性及酶活性的影響[J].西南林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)),2021,41(05):27-35.

[202].李俊杰. 供磷水平與施肥方法對(duì)臍橙生長(zhǎng)發(fā)育的影響[D].西南大學(xué),2021.DOI:10.27684/d.cnki.gxndx.2021.000516.

[203].解云,郭世華.谷子品種農(nóng)藝性狀的灰色關(guān)聯(lián)度分析及綜合評(píng)價(jià)[J].分子植物育種,2021,19(06):2064-2072.DOI:10.13271/j.mpb.019.002064.

[204].安麗東. 固定化粉紅粘帚霉微球的制備及其對(duì)番茄的生防作用研究[D].東北農(nóng)業(yè)大學(xué),2021.

[205].顧晶晶,丁志強(qiáng),楊樂,田文仲.灌漿中后期高溫脅迫對(duì)小麥品種耐熱性的影響[J].山西農(nóng)業(yè)科學(xué),2021,49(10):1152-1157.

[206].劉雅婷. 河岸帶紫花苜蓿根-土相互力學(xué)作用時(shí)間效應(yīng)研究[D].太原理工大學(xué),2021.DOI:10.27352/d.cnki.gylgu.2021.000120.

[207].崔亞琴,宗世祥.核桃緣吉丁成蟲的取食選擇行為及機(jī)制[J].北京林業(yè)大學(xué)學(xué)報(bào),2021,43(09):121-130.

[208].李金霞,孫小妹,劉娜,李良,陳年來.黑果枸杞功能性狀對(duì)氮磷添加的響應(yīng)及其可塑性[J].應(yīng)用生態(tài)學(xué)報(bào),2021,32(04):1279-1288.DOI:10.13287/j.1001-9332.202104.025.

[209].李震. 胡麻L(zhǎng)EA基因家族的鑒定及其在種子發(fā)育過程中的遺傳效應(yīng)[D].中國(guó)農(nóng)業(yè)科學(xué)院,2021.DOI:10.27630/d.cnki.gznky.2021.000355.

[210].范鵬敏. 花生白絹病抗性評(píng)價(jià)及轉(zhuǎn)錄組和代謝組分析[D].中國(guó)農(nóng)業(yè)科學(xué)院,2021.DOI:10.27630/d.cnki.gznky.2021.000691.

[211].李蓉蓉. 華南沿海風(fēng)鈴木類植物鑒定與遺傳多樣性研究[D].東北林業(yè)大學(xué),2021.DOI:10.27009/d.cnki.gdblu.2021.000586.

[212].任高磊. 淮北地區(qū)不同機(jī)插條件下優(yōu)質(zhì)中熟中粳控混肥一次性施用技術(shù)研究[D].揚(yáng)州大學(xué),2021.DOI:10.27441/d.cnki.gyzdu.2021.001410.

[213].張培,龐圣江,劉士玲,楊保國(guó),勞慶祥,段潤(rùn)梅,蔡道雄,諶紅輝.緩釋肥對(duì)江南油杉容器苗生長(zhǎng)的影響[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,49(09):92-98.DOI:10.13207/j.cnki.jnwafu.2021.09.011.

[214].李靜雯, et al."黃淮麥區(qū)部分小麥品種粒重基因TaGS5-A1的等位變異分布及其效應(yīng)分析." 麥類作物學(xué)報(bào) 41.03(2021):272-280. doi:

[215].王鑫.灰棗優(yōu)系的比較及鑒定.2021.塔里木大學(xué),MA thesis.

[216].黎松松.混播箭筈豌豆或施肥對(duì)燕麥草地減肥增效的影響.2021.新疆農(nóng)業(yè)大學(xué),MA thesis.

[217].白晨陽, et al."機(jī)械收獲方式對(duì)油菜籽粒關(guān)鍵性狀的影響." 中國(guó)農(nóng)業(yè)科學(xué) 54.14(2021):2991-3003. doi:

[218].曹城華, 武文波,and 王鈺."基于Radon變換的空間目標(biāo)運(yùn)動(dòng)方向檢測(cè)." 光學(xué)精密工程 29.07(2021):1678-1685. doi:

[219].張芳, et al."基于SNP標(biāo)記的小麥籽粒性狀全基因組關(guān)聯(lián)分析." 中國(guó)農(nóng)業(yè)科學(xué) 54.10(2021):2053-2064. doi:

[220].李金龍, et al."基于表型性狀和SSR分子標(biāo)記構(gòu)建甜蕎初級(jí)核心種質(zhì)." 植物遺傳資源學(xué)報(bào) 22.05(2021):1240-1247. doi:10.13430/j.cnki.jpgr.20210308001.

[221].王安貴, et al."基于高密度SNP標(biāo)記對(duì)玉米籽粒相關(guān)性狀的QTL定位." 分子植物育種 19.10(2021):3323-3328. doi:10.13271/j.mpb.019.003323.

[222].胡曉輝,崔鳳高,楊偉強(qiáng),侯名語,張勝忠,王嵩,侯剛,王晶珊,苗華榮,陳靜.基于高密度遺傳圖譜的花生籽仁大小相關(guān)性狀QTL定位[J].花生學(xué)報(bào),2021,50(03):19-25+54.DOI:10.14001/j.issn.1002-4093.2021.03.003.

[223].陳曉軍, et al."基于基因編輯技術(shù)創(chuàng)制高亞油酸水稻材料." 中國(guó)農(nóng)業(yè)科學(xué) 54.14(2021):2931-2940. doi:

[224].王安貴, et al."基于溫?zé)嵊衩譌_(2:3)家系產(chǎn)量相關(guān)性狀的遺傳解析." 種子 40.07(2021):130-134. doi:10.16590/j.cnki.1001-4705.2021.07.130.

[225].郭燕, et al."基于葉片解剖結(jié)構(gòu)的京津冀主栽板栗品種抗旱性評(píng)價(jià)." 核農(nóng)學(xué)報(bào) 35.08(2021):1771-1782. doi:

[226].董泉彬.基于雜化交聯(lián)策略的可注射抗菌透明質(zhì)酸水凝膠的構(gòu)建及其預(yù)防CIED囊袋感染的研究.2021.南昌大學(xué),PhD dissertation.

[227].葉廷紅.鉀肥施用量對(duì)水稻產(chǎn)量、鉀素吸收利用及稻米品質(zhì)的影響.2021.華中農(nóng)業(yè)大學(xué),MA thesis.

[228].張江林.鉀素營(yíng)養(yǎng)增強(qiáng)水稻抵抗葉鞘腐敗病的生理機(jī)制.2021.華中農(nóng)業(yè)大學(xué),PhD dissertation.

[229].艾鵬睿,and 馬英杰."間作模式農(nóng)田小氣候效應(yīng)對(duì)棉花生理生態(tài)指標(biāo)的影響." 新疆農(nóng)業(yè)科學(xué) 58.09(2021):1594-1602. doi:

[230].羅惠.箭葉淫羊藿復(fù)合群的形態(tài)變異與系統(tǒng)發(fā)育研究.2021.湖北民族大學(xué),MA thesis.

[231].劉秋員.江淮東部中粳優(yōu)質(zhì)高產(chǎn)氮高效類型及其若干形態(tài)生理特征.2021.揚(yáng)州大學(xué),PhD dissertation.

[232].田錚, et al."江蘇省半糯型粳稻蒸煮食味品質(zhì)性狀的差異分析." 中國(guó)水稻科學(xué) 35.03(2021):249-258. doi:10.16819/j.1001-7216.2021.01103.

[233].朱娟娟, et al."解鉀菌與鹽脅迫對(duì)枸杞幼苗根系特征和生理代謝的影響." 干旱地區(qū)農(nóng)業(yè)研究 39.05(2021):50-58+65. doi:

[234].段義三, et al."粳稻谷低溫倉(cāng)儲(chǔ)期間糧堆特性及加工品質(zhì)的變化." 食品工業(yè)科技 42.09(2021):289-298. doi:10.13386/j.issn1002-0306.2020070046.

[235].龍麗.聚乙烯微塑料和鹽酸環(huán)丙沙星單一及聯(lián)合作用對(duì)漂浮植物的影響.2021.湖北大學(xué),MA thesis.

[236].盧培娜.菌肥與腐熟秸稈對(duì)鹽堿地燕麥土壤微生態(tài)環(huán)境的調(diào)控機(jī)制.2021.內(nèi)蒙古農(nóng)業(yè)大學(xué),PhD dissertation.

[237].阮俊梅.開放式增溫對(duì)東北水稻產(chǎn)量、氮素利用及農(nóng)田溫室氣體排放的影響.2021.中國(guó)農(nóng)業(yè)科學(xué)院,MA thesis.

[238].李明珠.抗白粉病、葉銹病小偃麥衍生系的分子細(xì)胞遺傳學(xué)鑒定.2021.山東農(nóng)業(yè)大學(xué),MA thesis.

[239].李春花, et al."苦蕎種質(zhì)資源性狀評(píng)價(jià)及優(yōu)異資源篩選." 干旱地區(qū)農(nóng)業(yè)研究 39.06(2021):19-27. doi:

[240].鄭俊青, et al."苦蕎重組自交系群體粒重、粒形與蛋白組分含量的變異." 浙江農(nóng)業(yè)學(xué)報(bào) 33.04(2021):565-575. doi:

[241].鄭冉, et al."苦蕎重組自交系群體籽粒黃酮含量與產(chǎn)量性狀分析." 廣西植物 41.02(2021):216-224. doi:

[242].梁龍, et al."樂昌含笑不同家系的葉形態(tài)與生長(zhǎng)差異分析." 熱帶亞熱帶植物學(xué)報(bào) 29.05(2021):503-508. doi:

[243].李秋鳳.利用CRISPR/Cas9技術(shù)編輯水稻SD1基因改良環(huán)江香糯株高的研究.2021.廣西大學(xué),MA thesis.

[244].吳嫻, et al."利用CRISPR/Cas9基因編輯技術(shù)改良大粒香稻瘟病抗性." 種子 40.07(2021):50-55. doi:10.16590/j.cnki.1001-4705.2021.07.050.

[245].張波, et al."利用單片段代換系鑒定巴西陸稻IAPAR9中的粒型基因." 作物學(xué)報(bào) 47.08(2021):1472-1480. doi:

[246].周圣.利用機(jī)器學(xué)習(xí)優(yōu)化油菜含油量和脂肪酸的快速分析模型.2021.武漢輕工大學(xué),MA thesis.

[247].邢運(yùn)高, et al."兩系亞種間雜交水稻組合的產(chǎn)量和品質(zhì)性狀雜種優(yōu)勢(shì)分析." 江蘇農(nóng)業(yè)科學(xué) 49.01(2021):59-63. doi:10.15889/j.issn.1002-1302.2021.01.011.

[248].馮榮梅, 周玉竹,and 趙琳琳."兩種不同消毒方法用于口腔牙椅水路消毒效果觀察." 齊魯護(hù)理雜志 27.21(2021):167-169. doi:

[249].楊貴婷.磷酸脲基復(fù)合肥制備工藝優(yōu)化及其在濱海鹽漬土中的磷素增效機(jī)制.2021.山東農(nóng)業(yè)大學(xué),PhD dissertation.

[250].張燕.磷添加對(duì)青海扁莖早熟禾養(yǎng)分重吸收的影響.2021.青海大學(xué),MA thesis.

[251].張瀟.陸地棉野生系闊葉棉產(chǎn)量和纖維品質(zhì)QTL有利等位基因鑒定.2021.西南大學(xué),MA thesis.

[252].涂晶晶, et al."馬尾松不同葉型幼苗外生菌根真菌群落特征." 菌物學(xué)報(bào) 40.01(2021):124-134. doi:10.13346/j.mycosystema.200222.

[253].譚著明, et al."馬尾松林分大徑材個(gè)體異型生長(zhǎng)模式解析." 湖南林業(yè)科技 48.03(2021):8-14. doi:

[254].王胤,and 姚瑞玲."馬尾松組培苗對(duì)氮素形態(tài)的生長(zhǎng)響應(yīng)." 廣西植物 41.06(2021):922-929. doi:

[255].張旭, et al."麥稈還田對(duì)直播和移栽棉花產(chǎn)量及氮素吸收的影響." 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào) 23.03(2021):122-131. doi:10.13304/j.nykjdb.2019.0964.

[256].馬霜.毛竹擴(kuò)展蛋白家族全基因組分析及PeEXPA8功能研究.2021.西南科技大學(xué),MA thesis.

[257].胡瑞財(cái), et al."毛竹葉片性狀及其異速增長(zhǎng)關(guān)系的海拔梯度效應(yīng)." 竹子學(xué)報(bào) 40.01(2021):52-58. doi:10.19560/j.cnki.issn1000-6567.2021.01.010.

[258].王學(xué)成, et al."棉花秸稈不同埋深對(duì)土壤水鹽分布及棉花根系構(gòu)型的影響." 節(jié)水灌溉 .09(2021):77-82. doi:

[259].張曉蕊, 董春娟,and 尚慶茂."苗齡對(duì)茄果類蔬菜扦插苗莖基不定根發(fā)生的影響." 中國(guó)蔬菜 .05(2021):58-63. doi:10.19928/j.cnki.1000-6346.2021.2014.

[260].楊亞飛, et al."某市政污水處理廠的微生物氣溶膠排放特征及其定量風(fēng)險(xiǎn)評(píng)價(jià)研究." 給水排水 57.S1(2021):104-109. doi:10.13789/j.cnki.wwe1964.2021.S1.022.

[261].劉鵬翀.苜蓿和香根草根系-黃土抗剪力學(xué)特性研究.2021.太原理工大學(xué),MA thesis.

[262].張俊, et al."鉬肥拌種量對(duì)旱薄地花生發(fā)育及氮素積累的影響." 河南農(nóng)業(yè)科學(xué) 50.03(2021):59-66. doi:10.15933/j.cnki.1004-3268.2021.03.008.

[263].王吉祥, et al."耐亞磷酸鹽紫花苜蓿品種篩選及評(píng)價(jià)指標(biāo)的鑒定." 草業(yè)學(xué)報(bào) 30.05(2021):186-199. doi:

[264].姜朋, et al."寧麥9號(hào)/揚(yáng)麥158重組自交系群體產(chǎn)量性狀的遺傳解析." 作物學(xué)報(bào) 47.05(2021):869-881. doi:

[265].景亮亮.噴霧助劑對(duì)3種藥劑的增效機(jī)制及應(yīng)用研究.2021.寧夏大學(xué),MA thesis.

[266].陶利思, et al."偏高水分粳稻谷儲(chǔ)藏期間糧堆空氣特性與品質(zhì)指標(biāo)的變化." 食品工業(yè)科技 43.02(2022):328-337. doi:10.13386/j.issn1002-0306.2021060097.

[267].陳春, et al."片段化森林中檵木幼苗種內(nèi)葉經(jīng)濟(jì)性狀變異及其驅(qū)動(dòng)因子." 浙江大學(xué)學(xué)報(bào)(理學(xué)版) 48.06(2021):718-727. doi:

[268].陳春.片段化生境中常見植物檵木和短尾越橘種內(nèi)葉功能性狀研究.2021.浙江大學(xué),MA thesis.

[269].阮振.片段化生境中凋落葉和細(xì)枝分解特征及其影響因素.2021.浙江大學(xué),MA thesis.

[270].桑金盛.蘋果根際土壤銅的形態(tài)及其對(duì)幼樹養(yǎng)分吸收和分配的影響.2021.山東農(nóng)業(yè)大學(xué),MA thesis.

[271].李昊.蘋果根區(qū)土壤鈣形態(tài)及其對(duì)根系生長(zhǎng)發(fā)育的影響.2021.山東農(nóng)業(yè)大學(xué),MA thesis.

[272].劉焱, et al."掐葉時(shí)期對(duì)宛芝16芝麻種植效益的影響." 河北農(nóng)業(yè)科學(xué) 25.01(2021):40-43. doi:

[273].李鵬.蕎麥直鏈淀粉含量測(cè)定及Waxy克隆分析.2021.貴州師范大學(xué),MA thesis.

[274].劉曉偉, et al."缺鉀對(duì)不同品種冬小麥土壤鉀素和品質(zhì)的影響." 新疆農(nóng)業(yè)科學(xué) 58.02(2021):332-341. doi:

[275].許明宸.溶藻菌篩選、復(fù)合菌劑制備及在養(yǎng)殖尾水中的應(yīng)用研究.2021.常州大學(xué),MA thesis.

[276].李傳廣.三種植物生長(zhǎng)調(diào)節(jié)劑對(duì)烤煙幼苗生長(zhǎng)發(fā)育的影響.2021.山東農(nóng)業(yè)大學(xué),MA thesis.

[277].馬玲, et al."沙河水庫(kù)浮游植物季節(jié)變化特征." 江蘇水利 .01(2022):19-22. doi:10.16310/j.cnki.jssl.2022.01.007.

[278].王文越, et al."山楂與野山楂的化學(xué)成分對(duì)比研究." 山東中醫(yī)藥大學(xué)學(xué)報(bào) 45.05(2021):672-679. doi:10.16294/j.cnki.1007-659x.2021.05.020.

[279].馬佳琳, et al."深秋紅沙棘嫩枝扦插育苗試驗(yàn)研究." 山西林業(yè)科技 50.03(2021):4-7+12. doi:

[280].趙偉亮.生草對(duì)蘋果園微域環(huán)境及果實(shí)品質(zhì)的影響.2021.塔里木大學(xué),MA thesis.

[281].許明宸, et al."生態(tài)溝渠凈化稻田排水動(dòng)力學(xué)分析和生物相特征." 環(huán)境化學(xué) 40.02(2021):592-602. doi:

[282].謝呈輝, et al."施氮量對(duì)寧夏引黃灌區(qū)麥后復(fù)種糜子生長(zhǎng)、產(chǎn)量及氮素利用的影響." 作物學(xué)報(bào) 48.02(2022):463-477. doi:

[283].吳子帥, et al."施氮量和栽插密度對(duì)桂育11號(hào)產(chǎn)量和稻米品質(zhì)的影響." 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào) 23.08(2021):154-162. doi:10.13304/j.nykjdb.2021.0102.

[284].凌晨, et al."雙季稻栽培對(duì)水稻DUS測(cè)試標(biāo)準(zhǔn)品種數(shù)量性狀表達(dá)的影響." 作物雜志 .04(2021):18-25. doi:10.16035/j.issn.1001-7283.2021.04.003.

[285].陳庭木, et al."水稻低直鏈淀粉資源篩選." 中國(guó)農(nóng)學(xué)通報(bào) 37.05(2021):21-25. doi:

[286].李輝.水稻覆膜旱直播技術(shù)與裝備研究.2021.吉林大學(xué),PhD dissertation.

[287].顧正文.水稻可溶性淀粉合成酶不同突變組合創(chuàng)建與初步品質(zhì)分析.2021.揚(yáng)州大學(xué),MA thesis.

[288].來桂玉.水稻粒長(zhǎng)QTL GL3.4的遺傳解析與OsGATA7的功能研究.2021.中國(guó)農(nóng)業(yè)科學(xué)院,MA thesis.

[289].程一臣.水稻粒重粒形QTLqTGW1-2的分解和驗(yàn)證.2021.中國(guó)農(nóng)業(yè)科學(xué)院,MA thesis.

[290].杜成興, et al."水稻粒重粒形QTL的定位及qTGW1.2/qGL1.2的驗(yàn)證." 中國(guó)水稻科學(xué) 35.04(2021):359-372. doi:10.16819/j.1001-7216.2021.201205.

[291].田彪, et al."水稻苗期根部性狀的遺傳分析和最長(zhǎng)根長(zhǎng)QTL qLRL4的精細(xì)定位." 作物學(xué)報(bào) 47.10(2021):1863-1873. doi:

[292].殷春淵, et al."水稻食味品質(zhì)性狀間相關(guān)性分析及其與葉片光合作用的關(guān)系." 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào) 23.04(2021):119-127. doi:10.13304/j.nykjdb.2020.0218.

[293].田彪.水稻穗部性狀雜種優(yōu)勢(shì)的QTL分析和最長(zhǎng)根長(zhǎng)QTL qLRL4的精細(xì)定位.2021.中國(guó)農(nóng)業(yè)科學(xué)院,MA thesis.

[294].唐詩(shī)聞.水稻突變體zsd11和lmm3的表型鑒定及其候選基因分析.2021.西南科技大學(xué),MA thesis.

[295].王大川.水稻直穗密粒CSSL-Z749和短寬粒CSSL-Z357鑒定及重要性狀QTL分析.2021.西南大學(xué),MA thesis.

[296].王肖鳳, et al."水分管理對(duì)再生稻稻米品質(zhì)的影響." 華中農(nóng)業(yè)大學(xué)學(xué)報(bào) 40.02(2021):103-111. doi:10.13300/j.cnki.hnlkxb.2021.02.011.

[297].李江艷.水分脅迫下7份鴨茅材料苗期耗水特性及抗旱性研究.2021.新疆農(nóng)業(yè)大學(xué),MA thesis.

[298].齊琦, 王洪芬,and 陳守剛."酸摻雜聚苯胺復(fù)合材料的制備及其pH敏感性研究." 表面技術(shù) 50.04(2021):267-274. doi:10.16490/j.cnki.issn.1001-3660.2021.04.027.

[299].施林林.太湖稻區(qū)優(yōu)質(zhì)食味粳稻產(chǎn)量品質(zhì)形成的溫光生態(tài)及利用研究.2021.揚(yáng)州大學(xué),PhD dissertation.

[300].付均惠, et al."泰山白首烏葉片性狀變異分析." 山東林業(yè)科技 51.02(2021):7-11. doi:

[301].舒海燕, et al."通過轉(zhuǎn)化脂肪酸去飽和酶基因AcoFAD2提高菠蘿植株的抗寒能力." 分子植物育種 19.21(2021):7132-7137. doi:10.13271/j.mpb.019.007132.

[302].宋書婷.通氣灌溉對(duì)蘋果根區(qū)環(huán)境及根系發(fā)育和養(yǎng)分吸收的影響.2021.山東農(nóng)業(yè)大學(xué),MA thesis.

[303].田孝志.土壤緊實(shí)度對(duì)蘋果幼樹硫代謝的影響及稻殼炭的改良作用.2021.山東農(nóng)業(yè)大學(xué),MA thesis.

[304].高陽.土壤水分梯度變化對(duì)內(nèi)蒙古典型草原草本植物形態(tài)及成分的影響.2021.中央民族大學(xué),MA thesis.

[305].周曉鑫.土壤質(zhì)地和含水量對(duì)紫花苜蓿苗期生長(zhǎng)和根系形態(tài)的影響.2021.中國(guó)農(nóng)業(yè)科學(xué)院,MA thesis.

[306].馬旭輝, et al."褪黑素對(duì)玉米幼苗根系發(fā)育和抗旱性的影響." 生物技術(shù)通報(bào) 37.02(2021):1-14. doi:10.13560/j.cnki.biotech.bull.1985.2020-0575.

[307].徐華山, et al."外引水稻種質(zhì)資源的品質(zhì)評(píng)價(jià)與重要品質(zhì)基因的基因型鑒定." 分子植物育種 19.17(2021):5891-5898. doi:10.13271/j.mpb.019.005891.

[308].李丹丹, et al."外源激素對(duì)比利時(shí)杜鵑扦插根系特征的影響." 生態(tài)科學(xué) 40.02(2021):82-88. doi:10.14108/j.cnki.1008-8873.2021.02.011.

[309].孟姝婷.外源水楊酸對(duì)鹽堿條件下蘋果根系生長(zhǎng)和養(yǎng)分吸收的影響.2021.山東農(nóng)業(yè)大學(xué),MA thesis.

[310].寇津銘.外源棕櫚酸介導(dǎo)西瓜對(duì)枯萎病抗性機(jī)理的初步研究.2021.東北農(nóng)業(yè)大學(xué),MA thesis.

[311].閆思華.微咸水-碳肥-根系協(xié)同調(diào)控對(duì)番茄生長(zhǎng)發(fā)育的影響.2021.寧夏大學(xué),MA thesis.

[312].冉盼.西藏栽培和野生苦蕎資源評(píng)價(jià)及其分子標(biāo)記系統(tǒng)關(guān)系研究.2021.貴州師范大學(xué),MA thesis.

[313].甄子龍.向日葵苗期抗旱性鑒定及抗旱相關(guān)性狀的全基因組關(guān)聯(lián)分析.2021.內(nèi)蒙古農(nóng)業(yè)大學(xué),MA thesis.

[314].甄子龍, et al."向日葵種質(zhì)資源苗期抗旱性鑒定及抗旱指標(biāo)篩選." 干旱地區(qū)農(nóng)業(yè)研究 39.04(2021):228-238. doi:

[315].裴婕,and 余春梅."小麥8親本高世代互交群體的創(chuàng)制與應(yīng)用." 南通大學(xué)學(xué)報(bào)(自然科學(xué)版) 20.04(2021):65-71. doi:

[316].魯星.小麥產(chǎn)量和抗旱性狀的鑒定及GWAS分析.2021.山東農(nóng)業(yè)大學(xué),MA thesis.

[317].范濤, et al."小麥單位面積穗數(shù)和粒長(zhǎng)主效QTL緊密連鎖KASP標(biāo)記的開發(fā)及其效應(yīng)評(píng)價(jià)." 中國(guó)農(nóng)業(yè)科學(xué) 54.14(2021):2941-2951. doi:

[318].時(shí)曉磊, et al."小麥根部耐鹽性狀全基因組關(guān)聯(lián)分析." 植物遺傳資源學(xué)報(bào) 22.01(2021):57-73. doi:10.13430/j.cnki.jpgr.20200322001.

[319].劉佳熠.小麥根系性狀相關(guān)基因TaEXPA5和TaDGL1的克隆及其優(yōu)異單倍型發(fā)掘.2021.西北農(nóng)林科技大學(xué),MA thesis.

[320].陳華斌.小麥粒形、品質(zhì)和農(nóng)藝相關(guān)性狀的全基因組關(guān)聯(lián)分析.2021.浙江大學(xué),MA thesis.

[321].劉佳熠, et al."小麥苗期和灌漿中期根系性狀與地上形態(tài)及產(chǎn)量性狀的相關(guān)性." 麥類作物學(xué)報(bào) 41.07(2021):875-882. doi:

[322].霍志學(xué).小麥耐鹽主效QTL的挖掘及分子標(biāo)記開發(fā).2021.山東農(nóng)業(yè)大學(xué),MA thesis.

[323].石曉涵.小麥品種抗白粉病基因功能標(biāo)記分析和良星99成株期抗白粉病基因定位.2021.中國(guó)農(nóng)業(yè)科學(xué)院,MA thesis.

[324].郝佳敏.小麥新矮源鑒定及小麥矮稈基因Rht12 和 Rht-B1b在六倍體小黑麥中的遺傳效應(yīng)研究.2021.西北農(nóng)林科技大學(xué),MA thesis.

[325].董魯浩.小麥馴化過程中亞基因組差異核苷酸模式及粒型調(diào)控位點(diǎn)的研究.2021.山東農(nóng)業(yè)大學(xué),PhD dissertation.

[326].李昊哲.小麥煙農(nóng)999優(yōu)質(zhì)高產(chǎn)遺傳基礎(chǔ)解析.2021.煙臺(tái)大學(xué),MA thesis.

[327].趙瑞, et al."小麥種質(zhì)資源成株期氮效率評(píng)價(jià)及篩選." 中國(guó)農(nóng)業(yè)科學(xué) 54.18(2021):3818-3833. doi:

[328].梅冬旭.小蘇打?qū)Σ诿渍糁笃焚|(zhì)及其淀粉性質(zhì)的影響研究.2021.中南林業(yè)科技大學(xué),MA thesis.

[329].張霞.小偃麥種質(zhì)系SN304的鑒定及重要性狀QTL分析.2021.山東農(nóng)業(yè)大學(xué),PhD dissertation.

[330].李雅菲.鋅與吡蟲啉或其它微肥配合噴施對(duì)小麥籽粒富鋅效果及蛋白組分的影響.2021.西北農(nóng)林科技大學(xué),MA thesis.

[331].李鵬, 田嘉,and 李疆."新疆扁桃表型指標(biāo)多樣性及育種方向分析." 中南林業(yè)科技大學(xué)學(xué)報(bào) 41.05(2021):29-41. doi:10.14067/j.cnki.1673-923x.2021.05.004.

[332].閆龍翔, et al."新型含硒納米硅肥在水稻上的施用效果初探." 上海農(nóng)業(yè)科技 .03(2021):85-87. doi:

[333].海日汗, et al."興安盟地區(qū)優(yōu)質(zhì)水稻品種比較試驗(yàn)." 中國(guó)種業(yè) .11(2021):64-70. doi:10.19462/j.cnki.1671-895x.2021.11.021.

[334].王文婷.沿江地區(qū)溫光要素對(duì)優(yōu)質(zhì)粳稻產(chǎn)量與品質(zhì)的影響研究.2021.揚(yáng)州大學(xué),PhD dissertation.

[335].王偉, 萬佳,and 蔡夢(mèng)影."鹽脅迫對(duì)黃山欒樹幼苗生長(zhǎng)的影響." 南方林業(yè)科學(xué) 49.01(2021):12-14+20. doi:10.16259/j.cnki.36-1342/s.2021.01.003.

[336].韋還和, et al."鹽脅迫對(duì)水稻穎花形成及籽粒充實(shí)的影響." 作物學(xué)報(bào) 47.12(2021):2471-2480. doi:

[337].齊冰潔, et al."燕麥不同鋅效率品種苗期耐低鋅脅迫的根系形態(tài)差異." 江蘇農(nóng)業(yè)學(xué)報(bào) 37.05(2021):1119-1124. doi:

[338].丁紅元.燕山板栗不同品種(系)實(shí)生苗抗旱性評(píng)價(jià).2021.河北科技師范學(xué)院,MA thesis.

[339].盧廣, et al."野生大麥和栽培大麥籽粒性狀及蛋白質(zhì)含量的多樣性分析." 華中農(nóng)業(yè)大學(xué)學(xué)報(bào) 40.03(2021):113-125. doi:10.13300/j.cnki.hnlkxb.2021.03.013.

[340].蘇凱, et al."葉面滯塵量對(duì)大葉黃楊光譜特征影響研究." 北京林業(yè)大學(xué)學(xué)報(bào) 43.11(2021):40-49. doi:

[341].徐誠(chéng), et al."以蛭石為主的復(fù)配基質(zhì)對(duì)黃瓜育苗的影響." 江蘇農(nóng)業(yè)科學(xué) 49.20(2021):148-154. doi:10.15889/j.issn.1002-1302.2021.20.023.

[342].徐誠(chéng).以蛭石為主的黃瓜基質(zhì)配方篩選.2021.塔里木大學(xué),MA thesis.

[343].程欣然, et al."異源過表達(dá)Atvip1基因增強(qiáng)轉(zhuǎn)基因高粱對(duì)鹽堿脅迫的抗性." 華北農(nóng)學(xué)報(bào) 36.04(2021):1-9. doi:

[344].楊瑀.有機(jī)物料對(duì)退化黑土酶活性和有機(jī)碳組分及大豆幼苗生長(zhǎng)的影響.2021.東北農(nóng)業(yè)大學(xué),MA thesis.

[345].楚光紅, et al."幼苗期不同節(jié)位摘心對(duì)高產(chǎn)春大豆根系生長(zhǎng)和產(chǎn)量的影響." 作物雜志 .03(2021):195-201. doi:10.16035/j.issn.1001-7283.2021.03.030.

[346].楚光紅, et al."幼苗期摘心對(duì)高產(chǎn)春大豆根系生長(zhǎng)和產(chǎn)量的影響." 干旱地區(qū)農(nóng)業(yè)研究 39.02(2021):102-110. doi:

[347].褚夢(mèng)寒.玉米SBP基因的遺傳演化及其與產(chǎn)量相關(guān)性狀的關(guān)聯(lián)分析.2021.揚(yáng)州大學(xué),MA thesis.

[348].范震, et al."玉米秸稈基纖維素保水劑對(duì)土壤持水性能及冬小麥根系生長(zhǎng)的影響." 中國(guó)農(nóng)學(xué)通報(bào) 37.17(2021):51-57. doi:

[349].王新濤, et al."玉米籽粒相關(guān)性狀的QTL定位." 河南農(nóng)業(yè)科學(xué) 50.09(2021):9-15. doi:10.15933/j.cnki.1004-3268.2021.09.002.

[350].王雁青.圓果化香(Platycarya longipes)與香葉樹(Lindera communis)共生的水分競(jìng)爭(zhēng)和干旱響應(yīng).2021.貴州師范大學(xué),MA thesis.

[351].楊晨, et al."再生稻肥料管理對(duì)不同品種產(chǎn)量和品質(zhì)的影響." 中國(guó)水稻科學(xué) 36.01(2022):65-76. doi:10.16819/j.1001-7216.2022.210315.

[352].曠娜, et al."再生季稻米蛋白質(zhì)含量與外觀、加工品質(zhì)及營(yíng)養(yǎng)品質(zhì)的關(guān)系." 中國(guó)糧油學(xué)報(bào) 36.05(2021):1-7. doi:

[353].楊植.棗與酸棗雜交后代花與果實(shí)性狀遺傳規(guī)律研究.2021.塔里木大學(xué),MA thesis.

[354].仇倩倩, 馮一峰,and 吳翠云."棗種質(zhì)資源葉表型性狀遺傳多樣性分析." 新疆農(nóng)業(yè)科學(xué) 58.02(2021):282-293. doi:

[355].陳媛媛.長(zhǎng)鏈非編碼RNA SCARNA2介導(dǎo)的DNA損傷修復(fù)在結(jié)直腸癌放療敏感性中的作用及機(jī)制.2021.中國(guó)人民解放軍海軍軍醫(yī)大學(xué),PhD dissertation.

[356].邊成貴.植物根際菌鹽堿條件下促生的應(yīng)用.2021.山東農(nóng)業(yè)大學(xué),MA thesis.

[357].馬會(huì)珍, et al."中國(guó)部分優(yōu)質(zhì)粳稻外觀及蒸煮食味品質(zhì)特征比較." 中國(guó)農(nóng)業(yè)科學(xué) 54.07(2021):1338-1353. doi:

[358].李金龍.中國(guó)甜蕎種質(zhì)資源性狀評(píng)價(jià)及其遺傳多樣性分析.2021.中國(guó)農(nóng)業(yè)科學(xué)院,MA thesis.

[359].王潤(rùn)潤(rùn).種植密度和化學(xué)調(diào)控對(duì)油莎豆農(nóng)藝性狀及產(chǎn)量的影響.2021.石河子大學(xué),MA thesis.

[360].]陳韜."種子包衣劑對(duì)小麥種子萌發(fā)及幼苗生長(zhǎng)的影響." 農(nóng)業(yè)工程 11.06(2021):131-136. doi:

[361].麻和平, et al."重離子束輻照選育高產(chǎn)細(xì)菌素植物乳桿菌." 食品工業(yè)科技 42.15(2021):139-143. doi:10.13386/j.issn1002-0306.2021030234.

[362].張鈺, et al."重慶江津復(fù)興河流域浮游生物群落結(jié)構(gòu)、水質(zhì)及魚類資源現(xiàn)狀." 重慶師范大學(xué)學(xué)報(bào)(自然科學(xué)版) 38.04(2021):36-47. doi:

[363].韓麗君, 周帥,and 郝向春."主根長(zhǎng)度對(duì)遼東櫟幼苗形態(tài)和光合作用的影響." 植物生理學(xué)報(bào) 57.01(2021):139-148. doi:10.13592/j.cnki.ppj.2020.0388.

[364].邵星宇.壯秧劑與播量對(duì)機(jī)插水稻不同秧齡秧苗素質(zhì)及產(chǎn)量品質(zhì)的影響.2021.揚(yáng)州大學(xué),MA thesis.

[365].胡警勻, et al."紫花苜蓿對(duì)低磷酸鹽和亞磷酸鹽脅迫響應(yīng)機(jī)制的比較分析." 中國(guó)草地學(xué)報(bào) 43.08(2021):26-33. doi:10.16742/j.zgcdxb.20200365.

[366].郭雅琪, 姚振,and 陳中義."組培條件下空心蓮子草匍匐莖段根系發(fā)育的研究." 生物災(zāi)害科學(xué) 44.02(2021):212-218. doi:

[367].Monsur, Mahmuda Binte . 利用ABE技術(shù)編輯中嘉早17 Waxya基因進(jìn)而改良秈稻品種食味品質(zhì). Diss. 中國(guó)農(nóng)業(yè)科學(xué)院.

[368].管紅嬌等. "兩種不同閩楠葉片的形態(tài)比較." 農(nóng)業(yè)科學(xué)與技術(shù):英文版.

[369].Cao J, Shang Y, Xu D, et al. Identification and Validation of New Stable QTLs for Grain Weight and Size by Multiple Mapping Models in Common Wheat. Front Genet. 2020;11:584859. Published 2020 Nov 11. doi:10.3389/fgene.2020.584859

[370].Chan, A.N., Wang, LL., Zhu, YJ. et al. Identification through fine mapping and verification using CRISPR/Cas9-targeted mutagenesis for a minor QTL controlling grain weight in rice. Theor Appl Genet 134, 327–337 (2021). https://doi.org/10.1007/s00122-020-03699-6.(SC-G,IF4.439)

[371].Chang, S., Chang, T., Song, Q. et al. Architectural and Physiological Features to Gain High Yield in an Elite Rice Line YLY1. Rice 13, 60 (2020). https://doi.org/10.1186/s12284-020-00419-y.(SC-G,IF3.912)

[372].Changquan Zhang, Yong Yang, Zhuanzhuan Chen, Fei Chen, Lixu Pan, Yan Lu, Qianfeng Li, Xiaolei Fan, Zhizhong Sun, and Qiaoquan Liu, Characteristics of Grain Physicochemical Properties and the Starch Structure in Rice Carrying a Mutated ALKSSIIa Gene, Journal of Agricultural and Food Chemistry 2020 68 (47), 13950-13959, DOI: 10.1021/acs.jafc.0c01471.(IF4.192)

[373].Chen J, Zhao Z, Li Y, et al. Fine-tuning roles of Osa-miR159a in rice immunity against Magnaporthe oryzae and development. Research Square; 2020. DOI: 10.21203/rs.3.rs-66826/v1.(SC-A)

[374].Chen Yuyu, Zhu Aike, Xue Pao, Wen Xiaoxia, Cao Yongrun, Wang Beifang, Zhang Yue, Shah Liaqat, Cheng Shihua, Cao Liyong, Zhang Yingxin, Effects of GS3 and GL3.1 for Grain Size Editing by CRISPR/Cas9 in Rice, Rice Science, Volume 27, Issue 5, 2020, Pages 405-413, ISSN 1672-6308, https://doi.org/10.1016/j.rsci.2019.12.010.(SC-G,IF3.162)

[375].Chen Yuyu, Zhu Aike, Xue Pao, Wen Xiaoxia, Cao Yongrun, Wang Beifang, Zhang Yue, Shah Liaqat, Cheng Shihua, Cao Liyong, Zhang Yingxin, Effects of GS3 and GL3.1 for Grain Size Editing by CRISPR/Cas9 in Rice, Rice Science, Volume 27, Issue 5, 2020, Pages 405-413, ISSN 1672-6308, https://doi.org/10.1016/j.rsci.2019.12.010.(SC-G,IF3.162)

[376].Cheng Yan, Rui-ning Wang, Xiao-yan Zhao, Emission characteristics of bioaerosol and quantitative microbiological risk assessment for equipping individuals with various personal protective equipment in a WWTP, Chemosphere, Volume 265, 2021, 129117, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2020.129117.(IF5.778)

[377].Dawei Zhu, Changyun Fang, Zihui Qian, Baowei Guo, Zhongyang Huo, Differences in starch structure, physicochemical properties and texture characteristics in superior and inferior grains of rice varieties with different amylose contents, Food Hydrocolloids, Volume 110, 2021, 106170, ISSN 0268-005X, https://doi.org/10.1016/j.foodhyd.2020.106170.(SC-E,IF7.053)

[378].Dong N, Yin W, Liu D, et al. Regulation of Brassinosteroid Signaling and Salt Resistance by SERK2 and Potential Utilization for Crop Improvement in Rice. Front Plant Sci. 2020;11:621859. Published 2020 Dec 10. doi:10.3389/fpls.2020.621859.(SC-G,IF4.402)

[379].Fan X, Xu Z, Wang F, Feng B, Zhou Q, et al. (2020) Identification of colored wheat genotypes with suitable quality and yield traits in response to low nitrogen input. PLOS ONE 15(4): e0229535. https://doi.org/10.1371/journal.pone.0229535.(SC-G)

[380].Fang Y, Zhang X, Zhang X, et al. A High-Density Genetic Linkage Map of SLAFs and QTL Analysis of Grain Size and Weight in Barley (Hordeum vulgare L.). Front Plant Sci. 2020;11:620922. Published 2020 Dec 17. doi:10.3389/fpls.2020.620922.(SC-G,IF4.402)

[381].Fu, L., Wu, J., Yang, S. et al. Genome-wide association analysis of stem water-soluble carbohydrate content in bread wheat. Theor Appl Genet 133, 2897–2914 (2020). https://doi.org/10.1007/s00122-020-03640-x.(IF4.439)

[382].Gongduan Fan, Zhuoyi Chen, Mingqian Xia, Banghao Du, Minchen Bao, Shimin Wu, Jiajun Zhan, Jing Luo, Optimization of remedial nano-agent and its effect on dominant algal species succession in eutrophic water body, Journal of Environmental Management, Volume 281, 2021, 111884, ISSN 0301-4797, https://doi.org/10.1016/j.jenvman.2020.111884.(AlgaeC,IF5.647)

[383].Guan, P., Shen, X., Mu, Q. et al. Dissection and validation of a QTL cluster linked to Rht-B1 locus controlling grain weight in common wheat (Triticum aestivum L.) using near-isogenic lines. Theor Appl Genet 133, 2639–2653 (2020). https://doi.org/10.1007/s00122-020-03622-z.(SC-G,IF4.439)

[384].Guihua Zou, Guowei Zhai, Song Yan, Sujuan Li, Lengbo Zhou, Yanqing Ding, Heqin Liu, Zhipeng Zhang, Jianqiu Zou, Liyi Zhang, Junping Chen, Zhanguo Xin, Yuezhi Tao, Sorghum qTGW1a encodes a G-protein subunit and acts as a negative regulator of grain size, Journal of Experimental Botany, Volume 71, Issue 18, 19 September 2020, Pages 5389–5401, https://doi.org/10.1093/jxb/eraa277.(IF5.908)

[385].Hao, H, Cheng, L, Guo, Z, Wang, L, Shi, Z. Plant community characteristics and functional traits as drivers of soil erodibility mitigation along a land degradation gradient. Land Degrad Dev. 2020; 31: 1851– 1863. https://doi.org/10.1002/ldr.3579.(LA-S,IF3.775)

[386].He C, Ding Z, Mubeen S, Guo X, Fu H, Xin G. 2020. Evaluation of three wheat (Triticum aestivum L.) cultivars as sensitive Cd biomarkers during the seedling stage. PeerJ 8:e8478 https://doi.org/10.7717/peerj.8478.(LA-S)

[387].Huan Li, Junyuan Shi, Zepeng Wang, Weiwei Zhang, Hongqiang Yang, H2S pretreatment mitigates the alkaline salt stress on Malus hupehensis roots by regulating Na+/K+ homeostasis and oxidative stress, Plant Physiology and Biochemistry, Volume 156, 2020, Pages 233-241, ISSN 0981-9428, https://doi.org/10.1016/j.plaphy.2020.09.009.(LA-S,IF3.72)

[388].Jia Lyu, Dekai Wang, Penggen Duan, Yapei Liu, Ke Huang, Dali Zeng, Limin Zhang, Guojun Dong, Yingjie Li, Ran Xu, Baolan Zhang, Xiahe Huang, Na Li, Yingchun Wang, Qian Qian, Yunhai Li, Control of Grain Size and Weight by the GSK2-LARGE1/OML4 Pathway in Rice, The Plant Cell Jun 2020, 32 (6) 1905-1918; DOI: 10.1105/tpc.19.00468

[389].Jianqing Niu, Shusong Zheng, Xiaoli Shi, Yaoqi Si, Shuiquan Tian, Yilin He, Hong-Qing Ling, Fine mapping and characterization of the awn inhibitor B1 locus in common wheat (Triticum aestivum L.), The Crop Journal, Volume 8, Issue 4, 2020, Pages 613-622, ISSN 2214-5141, https://doi.org/10.1016/j.cj.2019.12.005.(IF3.395)

[390].Jianqing Niu, Shusong Zheng, Xiaoli Shi, Yaoqi Si, Shuiquan Tian, Yilin He, Hong-Qing Ling, Fine mapping and characterization of the awn inhibitor B1 locus in common wheat (Triticum aestivum L.), The Crop Journal, Volume 8, Issue 4, 2020, Pages 613-622, ISSN 2214-5141, https://doi.org/10.1016/j.cj.2019.12.005.(SC-G,IF3.395)

[391].Jingyi Wang, Ruitong Wang, Xinguo Mao, Jialing Zhang, Yanna Liu, Qi Xie, Xiaoyuan Yang, Xiaoping Chang, Chaonan Li, Xueyong Zhang, Ruilian Jing, RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat, Journal of Experimental Botany, Volume 71, Issue 18, 19 September 2020, Pages 5377–5388, https://doi.org/10.1093/jxb/eraa271.(SC-A,IF5.908)

[392].Jinshan Zhang, Zhenyu Zhou, Jinjuan Bai, Xiaoping Tao, Ling Wang, Hui Zhang, Jian-Kang Zhu, Disruption of MIR396e and MIR396f improves rice yield under nitrogen-deficient conditions, National Science Review, Volume 7, Issue 1, January 2020, Pages 102–112, https://doi.org/10.1093/nsr/nwz142.(SC-A,IF16.693)

[393].Kashif Hussain, Zhang Yingxing, Workie Anley, Aamir Riaz, Adil Abbas, Md. Hasanuzzaman Rani, Wang Hong, Shen Xihong, Cao Liyong, Cheng Shihua, Association Mapping of Quantitative Trait Loci for Grain Size in Introgression Line Derived from Oryza Rufipogon, Rice Science, Volume 27, Issue 3, 2020, Pages 246-254, ISSN 1672-6308, https://doi.org/10.1016/j.rsci.2020.04.007.(IF3.162)

[394].Kong, M, Qiao, Q, Ma, X, Tao, Y, Maharjan Raj, P, Zhen, W. Isolation and functional analysis of the zmARM4 locus in a novel maize (Zea mays) grain‐filling mutant. Plant Breed. 2020; 139: 217– 226. https://doi.org/10.1111/pbr.12786.(SC-G)

[395].Lei L, Wang L, Wang S and Wu J (2020) Marker-Trait Association Analysis of Seed Traits in Accessions of Common Bean (Phaseolus vulgaris L.) in China. Front. Genet. 11:698. doi: 10.3389/fgene.2020.00698.(SC-G,IF3.26)

[396].Lei Wang, Qing-Lai Dang, Binyam Tedla, Biochar and alternate partial root-zone irrigation greatly enhance the effectiveness of mulberry in remediating lead-contaminated soils, Journal of Plant Ecology, Volume 13, Issue 6, December 2020, Pages 757–764, https://doi.org/10.1093/jpe/rtaa063

[397].Li Zhang, Bill Shipley, Shurong Zhou, Exploring the relationship between functional structure and ecosystem multifunctionality requires intraspecific trait variability, bioRxiv 2020.11.03.366054; doi: https://doi.org/10.1101/2020.11.03.366054.(LA-S)

[398].Li, H., Zeng, S., Luo, X. et al. Effects of small ridge and furrow mulching degradable film on dry direct seeded rice. Sci Rep 11, 317 (2021). https://doi.org/10.1038/s41598-020-79227-9.(IF3.998)

[399].LI, H., ZENG, S., LUO, X. W, et al. EFFECTS OF DEGRADABLE MULCHING FILM ON SOIL TEMPERATURE, SEED GERMINATION AND SEEDLING GROWTH OF DIRECT-SEEDED RICE (ORYZA SATIVA L.), APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 18(6):8233-8249.(LA-S)

[400].Li, X., Chen, Z., Zhang, G. et al. Analysis of genetic architecture and favorable allele usage of agronomic traits in a large collection of Chinese rice accessions. Sci. China Life Sci. 63, 1688–1702 (2020). https://doi.org/10.1007/s11427-019-1682-6.(SC-G,IF4.611)

[401].Li, XP., Ma, XC., Wang, H. et al. Osa-miR162a fine-tunes rice resistance to Magnaporthe oryzae and Yield. Rice 13, 38 (2020). https://doi.org/10.1186/s12284-020-00396-2.(SC-A,IF3.912)

[402].Liu J, Li H, Zhang N, et al. Transcriptomic Analysis Reveals the Contribution of QMrl-7B to Wheat Root Growth and Development. Research Square; 2020. DOI: 10.21203/rs.3.rs-124839/v1.

[403].Liu L, Shi H, Li S, Sun M, Zhang R, Wang Y and Ren F (2020) Integrated Analysis of Molybdenum Nutrition and Nitrate Metabolism in Strawberry. Front. Plant Sci. 11:1117. doi: 10.3389/fpls.2020.01117.(LA-S,IF4.402)

[404].Liu, H., Sun, Z., Zhang, X. et al. QTL mapping of web blotch resistance in peanut by high-throughput genome-wide sequencing. BMC Plant Biol 20, 249 (2020). https://doi.org/10.1186/s12870-020-02455-8.(LA-S,IF3.497)

[405].Liu, H., Zhang, X., Xu, Y. et al. Identification and validation of quantitative trait loci for kernel traits in common wheat (Triticum aestivum L.). BMC Plant Biol 20, 529 (2020). https://doi.org/10.1186/s12870-020-02661-4.(SC-G,IF3.497)

[406].Lu P, Yang T, Li L, Zhao B, Liu J (2020) Response of oat morphologies, root exudates, and rhizosphere fungal communities to amendments in a saline-alkaline environment. PLOS ONE 15(12): e0243301. https://doi.org/10.1371/journal.pone.0243301.(LA-S)

[407].Lu Z, Fang Z, Liu W, et al. Grain Quality Characteristics and RVA Profile Analysis of Yuenongsimiao, a High Yield and Disease-resistant Rice Variety. Research Square; 2020. DOI: 10.21203/rs.3.rs-119602/v1.(SC-E)

[408].Luo, Q., Zheng, Q., Hu, P. et al. Mapping QTL for agronomic traits under two levels of salt stress in a new constructed RIL wheat population. Theor Appl Genet 134, 171–189 (2021). https://doi.org/10.1007/s00122-020-03689-8.(IF4.439)

[409].Min Xi, Wenge Wu, Youzun Xu, Yongjin Zhou, Gang Chen, Yalan Ji, Xueyuan Sun, iTRAQ-based quantitative proteomic analysis reveals the metabolic pathways of grain chalkiness in response to nitrogen topdressing in rice, Plant Physiology and Biochemistry, Volume 154, 2020, Pages 622-635, ISSN 0981-9428, https://doi.org/10.1016/j.plaphy.2020.06.012.(IF3.72)

[410].Niu Y, Chen T, Chen K, et al. Identification and Allele Mining of New Candidate Genes Underlying Rice Grain Weight and Grain Shape by Genome-Wide Association Study. Research Square; 2020. DOI: 10.21203/rs.3.rs-28490/v1.(SC-G)

[411].Pan, L., Lin, Wq., Yu, M. et al. Effects of Elevated Ozone Concentrations on Root Characteristics and Soil Properties of Elaeocarpus sylvestris and Michelia chapensis. Bull Environ Contam Toxicol 104, 682–688 (2020). https://doi.org/10.1007/s00128-020-02832-x.(LA-S)

[412].Peng Y, Mao B, Zhang C, Shao Y, Wu T, Hu L, Hu Y, Tang L, Li Y, Zhao B, Tang W and Xiao Y (2021) Correlations Between Parental Lines and Indica Hybrid Rice in Terms of Eating Quality Traits. Front. Nutr. 7:583997. doi: 10.3389/fnut.2020.583997.(IF3.365)

[413].Peng Zhang, Yuxiang Wen, Lei Wang, Hui Zhang, G. Geoff Wang, Tonggui Wu. Leaf Structural Carbohydrate Decreased for Pinus thunbergii along Coast–Inland Gradients. Forests 2020, 11, 449; doi:10.3390/f11040449.(LA-S)

[414].Rehman, F., Gong, H., Li, Z. et al. Identification of fruit size associated quantitative trait loci featuring SLAF based high-density linkage map of goji berry (Lycium spp.). BMC Plant Biol 20, 474 (2020). https://doi.org/10.1186/s12870-020-02567-1.(IF3.497)

[415].Ren, T., Fan, T., Chen, S. et al. Utilization of a Wheat55K SNP array-derived high-density genetic map for high-resolution mapping of quantitative trait loci for important kernel-related traits in common wheat. Theor Appl Genet (2021). https://doi.org/10.1007/s00122-020-03732-8.(IF4.439)

[416].Shi‐Rong Zhou, Hong‐Wei Xue. The rice PLATZ protein SHORT GRAIN6 determines grain size by regulating spikelet hull cell division. Journal of Integrative Plant Biology. June 2020, Volume 62, Issue 6, 847–864.(SC-E,IF4.885)

[417].Sun, K‐K, Yu, W‐S, Jiang, J‐J, et al. Mismatches between the resources for adult herbivores and their offspring suggest invasive Spartina alterniflora is an ecological trap. J Ecol. 2020; 108: 719– 732. https://doi.org/10.1111/1365-2745.13277.(LA-S,IF5.762)

[418].Tang Xinglin, Liu Guangzheng, Jiang Jiang, Lei Changju, Zhang Yunxing, Wang Liyan, Liu Xinliang (2020) Effects of growth irradiance on photosynthesis and photorespiration of Phoebe bournei leaves. Functional Plant Biology 47, 1053-1061.(LA-S)

[419].Wang a, Shu X, Jiang y, et al. Genome-wide Association Study-based Identification Genes Influencing Agronomic Traits in Rice (Oryza Sativa L.). Research Square; 2020. DOI: 10.21203/rs.3.rs-74749/v1.(SC-G)

[420].Wang, D., Yu, K., Jin, D., Sun, L., Chu, J., Wu, W., Xin, P., Gregová, E., Li, X., Sun, J., Yang, W., Zhan, K., Zhang, A. and Liu, D. (2020), Natural variations in the promoter of Awn Length Inhibitor 1 (ALI‐1) are associated with awn elongation and grain length in common wheat. Plant J, 101: 1075-1090. https://doi.org/10.1111/tpj.14575.(IF6.141)

[421].Wang, GJ., Wang, Y., Ying, JZ. et al. Identification of qLG2, qLG8, and qWG2 as novel quantitative trait loci for grain shape and the allelic analysis in cultivated rice. Planta 252, 18 (2020). https://doi.org/10.1007/s00425-020-03420-3.(SC-G,IF3.39)

[422].Wang, X., Zheng, M., Liu, H. et al. Fine-mapping and transcriptome analysis of a candidate gene controlling plant height in Brassica napus L.. Biotechnol Biofuels 13, 42 (2020). https://doi.org/10.1186/s13068-020-01687-y.(LA-S,IF4.815)

[423].Wei Zhang, Huifang Li, Liya Zhi, Qiannan Su, Jiajia Liu, Xiaoli Ren, Deyuan Meng, Na Zhang, Jun Ji, Xueyong Zhang, Junming Li, Functional markers developed from TaGS3, a negative regulator of grain weight and size, for marker-assisted selection in wheat, The Crop Journal, Volume 8, Issue 6, 2020, Pages 943-952, ISSN 2214-5141, https://doi.org/10.1016/j.cj.2020.03.003.(SC-G,IF3.395)

[424].Wei Zhang, Huifang Li, Liya Zhi, Qiannan Su, Jiajia Liu, Xiaoli Ren, Deyuan Meng, Na Zhang, Jun Ji, Xueyong Zhang, Junming Li, Functional markers developed from TaGS3, a negative regulator of grain weight and size, for marker-assisted selection in wheat, The Crop Journal, Volume 8, Issue 6, 2020, Pages 943-952, ISSN 2214-5141, https://doi.org/10.1016/j.cj.2020.03.003.(SC-G,IF3.395)

[425].Wenchao Yin, Yunhua Xiao, Mei Niu, Wenjing Meng, Lulu Li, Xiaoxing Zhang, Dapu Liu, Guoxia Zhang, Yangwen Qian, Zongtao Sun, Renyan Huang, Shiping Wang, Chun-Ming Liu, Chengcai Chu, Hongning Tong,ARGONAUTE2 Enhances Grain Length and Salt Tolerance by Activating BIG GRAIN3 to Modulate Cytokinin Distribution in Rice, The Plant Cell Jul 2020, 32 (7) 2292-2306; DOI: 10.1105/tpc.19.00542

[426].Xia Zhang, Caihong Cui, Yinguang Bao, Honggang Wang, Xingfeng Li, Molecular cytogenetic characterization of a novel wheat-Thinopyrum intermedium introgression line tolerant to phosphorus deficiency, The Crop Journal, 2020, ISSN 2214-5141, https://doi.org/10.1016/j.cj.2020.08.014.(LA-S,IF3.395)

[427].Xiao, Y., Liu, X., Zhang, L., Song, Z. and Zhou, S. (2021), The allometry of plant height explains species loss under nitrogen addition. Ecology Letters. https://doi.org/10.1111/ele.13673.(LA-S,IF8.665)

[428].Xiaohong Wang, Liming Yin, Feike A. Dijkstra, Jiayu Lu, Peng Wang, Weixin Cheng, Rhizosphere priming is tightly associated with root-driven aggregate turnover, Soil Biology and Biochemistry, Volume 149, 2020, 107964, ISSN 0038-0717, https://doi.org/10.1016/j.soilbio.2020.107964.(LA-S,IF5.795)

[429].Xiao-lan LI, Xiang LÜ, Xiao-hong WANG, Qin PENG, Ming-sheng ZHANG, Ming-jian REN, Biotic and abiotic stress-responsive genes are stimulated to resist drought stress in purple wheat, Journal of Integrative Agriculture, Volume 19, Issue 1, 2020, Pages 33-50, ISSN 2095-3119, https://doi.org/10.1016/S2095-3119(19)62659-6.(SC-G)

[430].Xin Guan, Qun Li, Tusunniyaze Maimaiti, Suke Lan, Peng Ouyang, Bowei Ouyang, Xian Wu, Sheng-Tao Yang, Toxicity and photosynthetic inhibition of metal-organic framework MOF-199 to pea seedlings, Journal of Hazardous Materials, 2020, 124521, ISSN 0304-3894, https://doi.org/10.1016/j.jhazmat.2020.124521.(IF9.038)

[431].Xu, H, Li, X, Zhang, H, et al. High temperature inhibits the accumulation of storage materials by inducing alternative splicing of OsbZIP58 during filling stage in rice. Plant Cell Environ. 2020; 43: 1879– 1896. https://doi.org/10.1111/pce.13779.(SC-E,IF6.362)

[432].Yang, L., Zhao, D., Meng, Z. et al. QTL mapping for grain yield-related traits in bread wheat via SNP-based selective genotyping. Theor Appl Genet 133, 857–872 (2020). https://doi.org/10.1007/s00122-019-03511-0.(IF4.439)

[433].Yan-huan Chen, Cheng Yan, Ya-fei Yang, Jia-xin Ma, Quantitative microbial risk assessment and sensitivity analysis for workers exposed to pathogenic bacterial bioaerosols under various aeration modes in two wastewater treatment plants, Science of The Total Environment, Volume 755, Part 2, 2021, 142615, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2020.142615.(HICC-B,IF6.551)

[434].Yujiao Gao, Kexin An, Weiwei Guo, Yongming Chen, Ruijie Zhang, Xue Zhang, Siyuan Chang, Vincenzo Rossi, Fangming Jin, Xinyou Cao, Mingming Xin, Huiru Peng, Zhaorong Hu, Weilong Guo, Jinkun Du, Zhongfu Ni, Qixin Sun, Yingyin Yao, The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality, The Plant Cell, 2021;, koaa040, https://doi.org/10.1093/plcell/koaa040.(IF9.618)

[435].Yu-Juan Lin, Yu-Xi Feng, Yan-Hong Li, Guo Yu, Xiao-Zhang Yu, Fuzzy synthetic evaluation of the impact of plant growth regulators on the root phenotype traits of rice seedlings under thiocyanate stress, Plant Physiology and Biochemistry, Volume 158, 2021, Pages 182-189, ISSN 0981-9428, https://doi.org/10.1016/j.plaphy.2020.10.029.(LA-S,IF3.72)

[436].Yunhua Chi, Kimani Wilson, Zhiquan Liu, Xiaoyuan Wu, Li Shang, Limin Zhang, Haichun Jing, Huaiqing Hao, Vacuolar invertase genes SbVIN1 and SbVIN2 are differently associated with stem and grain traits in sorghum (Sorghum bicolor), The Crop Journal, Volume 8, Issue 2, 2020, Pages 299-312, ISSN 2214-5141, https://doi.org/10.1016/j.cj.2019.06.012.(IF3.395)

[437].Yunhua Chi, Kimani Wilson, Zhiquan Liu, Xiaoyuan Wu, Li Shang, Limin Zhang, Haichun Jing, Huaiqing Hao, Vacuolar invertase genes SbVIN1 and SbVIN2 are differently associated with stem and grain traits in sorghum (Sorghum bicolor), The Crop Journal, Volume 8, Issue 2, 2020, Pages 299-312, ISSN 2214-5141, https://doi.org/10.1016/j.cj.2019.06.012.(SC-E,IF3.395)

[438].Yunlong Pang, Chunxia Liu, Danfeng Wang, Paul St. Amand, Amy Bernardo, Wenhui Li, Fang He, Linzhi Li, Liming Wang, Xiufang Yuan, Lei Dong, Yu Su, Huirui Zhang, Meng Zhao, Yunlong Liang, Hongze Jia, Xitong Shen, Yue Lu, Hongming Jiang, Yuye Wu, Anfei Li, Honggang Wang, Lingrang Kong, Guihua Bai, Shubing Liu, High-Resolution Genome-wide Association Study Identifies Genomic Regions and Candidate Genes for Important Agronomic Traits in Wheat, Molecular Plant, Volume 13, Issue 9, 2020, Pages 1311-1327, ISSN 1674-2052, https://doi.org/10.1016/j.molp.2020.07.008.(IF12.084)

[439].Zeng, X., Luo, Y., Vu, N.T.Q. et al. CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty. BMC Plant Biol 20, 313 (2020). https://doi.org/10.1186/s12870-020-02524-y.(SC-G,IF3.497)

[440].Zhang L-L, Li Y, Zheng Y-P, Wang H, Yang X, Chen J-F, Zhou S-X, Wang L-F, Li X-P, Ma X-C, Zhao J-Q, Pu M, Feng H, Fan J, Zhang J-W, Huang Y-Y and Wang W-M (2020) Expressing a Target Mimic of miR156fhl-3p Enhances Rice Blast Disease Resistance Without Yield Penalty by Improving SPL14 Expression. Front. Genet. 11:327. doi: 10.3389/fgene.2020.00327.(SC-G,IF3.26)

[441].Zhang, J., Jiao, X., Du, Q. et al. Effects of Vapor Pressure Deficit and Potassium Supply on Root Morphology, Potassium Uptake, and Biomass Allocation of Tomato Seedlings. J Plant Growth Regul (2020). https://doi.org/10.1007/s00344-020-10115-2.(IF2.672)

[442].Zhang, J.; Tong, T.; Potcho, P.M.; Huang, S.; Ma, L.; Tang, X. Nitrogen Effects on Yield, Quality and Physiological Characteristics of Giant Rice. Agronomy 2020, 10, 1816. https://doi.org/10.3390/agronomy10111816.(SC-E)

[443].Zhang, L., Ma, B., Bian, Z. et al. Grain Size Selection Using Novel Functional Markers Targeting 14 Genes in Rice. Rice 13, 63 (2020). https://doi.org/10.1186/s12284-020-00427-y.(SC-G,IF3.912)

[444].Zhang, M., Zhou, Zp., Chen, Yy. et al. Finding new addictive QTL for yield traits based on a high-density genetic map in hybrid rice. Plant Growth Regul 93, 105–115 (2021). https://doi.org/10.1007/s10725-020-00669-2.(IF2.388)

[445].Zhang, N., Zhang, X., Song, L. et al. Identification and validation of the superior alleles for wheat kernel traits detected by genome-wide association study under different nitrogen environments. Euphytica 216, 52 (2020). https://doi.org/10.1007/s10681-020-2572-5.(SC-G)

[446].Zhanqiang Hu, Hua Yang, Mamoun Chaima, Changyun Fang, Lin Lu, Xianqiao Hu, Bai Du, Zhiwei Zhu, Jianying Huang, A visualization and quantification method to evaluate the water-absorbing characteristics of rice, Food Chemistry, Volume 331, 2020, 127050, ISSN 0308-8146, https://doi.org/10.1016/j.foodchem.2020.127050.(SC-E,IF6.306)

[447].Zhanqiang Hu, Yuexi Yang, Lin Lu, Ye Chen, Zhiwei Zhu, Jianying Huang, Kinetics of water absorption expansion of rice during soaking at different temperatures and correlation analysis upon the influential factors, Food Chemistry, Volume 346, 2021, 128912, ISSN 0308-8146, https://doi.org/10.1016/j.foodchem.2020.128912.(SC-E,IF6.306)

[448].Zhao H., Yan W., Yu K., Wang T., Khattak A.N., Tian E. (2021): QTL identification for nine seed-related traits in Brassica juncea using a multiparent advanced generation intercross (MAGIC) population. Czech J. Genet. Plant Breed., 57: 9−18.(SC-G)

[449].Zhao, B, Wang, L, Shang, J, et al. Application of pearling in modified roller milling of hull-less barley and effect on noodles quality. J Food Process Preserv. 2020; 44:e14838. https://doi.org/10.1111/jfpp.14838.(SC-A)

[450].Zhao, J.; Ajadi, A.A.; Wang, Y.; Tong, X.; Wang, H.; Tang, L.; Li, Z.; Shu, Y.; Liu, X.; Li, S.; Wang, S.; Liu, W.; Zhang, J. Genome-Wide Identification of lncRNAs During Rice Seed Development. Genes 2020, 11, 243. https://doi.org/10.3390/genes11030243.(SC-G,IF3.759)

[451].Zheng, L., Liu, P., Zhang, S. et al. Favorable allele mining and breeding utilization of ALK in rice. Mol Breeding 40, 107 (2020). https://doi.org/10.1007/s11032-020-01183-z.(SC-G)

[452].Zhou, S.‐R. and Xue, H.‐W. (2020), The rice PLATZ protein SHORT GRAIN6 determines grain size by regulating spikelet hull cell division. J. Integr. Plant Biol, 62: 847-864. https://doi.org/10.1111/jipb.12851.(SC-E)

[453].Zhou, S.‐X., Zhu, Y., Wang, L.‐F., Zheng, Y.‐P., Chen, J.‐F., Li, T.‐T., Yang, X.‐M., Wang, H., Li, X.‐P., Ma, X.‐C., Zhao, J.‐Q., Pu, M., Feng, H., Li, Y., Fan, J., Zhang, J.‐W., Huang, Y.‐Y. and Wang, W.‐M. (2020), Osa‐miR1873 fine‐tunes rice immunity against Magnaporthe oryzae and yield traits. J. Integr. Plant Biol, 62: 1213-1226. https://doi.org/10.1111/jipb.12900.(SC-A,IF4.885)

[454].Zhu, Z., Zhang, H., Leng, J. et al. Isolation and characterization of plant growth-promoting rhizobacteria and their effects on the growth of Medicago sativa L. under salinity conditions. Antonie van Leeuwenhoek 113, 1263–1278 (2020). https://doi.org/10.1007/s10482-020-01434-1.(LA-S)

[455].Workie Anley Zegeye. 水稻半矮稈基因OsFBK4的定位及功能分析[D].中國(guó)農(nóng)業(yè)科學(xué)院,2020.

[456].艾鵬睿,馬英杰,海英.邊行效應(yīng)對(duì)間作棉花生理性狀及產(chǎn)量的影響[J].水資源與水工程學(xué)報(bào),2020,31(04):138-144.

[457].蔡俊. SlWRKY3通過TPK1b負(fù)調(diào)控番茄對(duì)灰霉病的抗性[D].華中農(nóng)業(yè)大學(xué),2020.

[458].蔡夢(mèng)穎,張平,宋煒涵,余江峰,郝棲賢,王平,劉世家,王益華,江玲,萬建民.通過CRISPR/Cas9技術(shù)靶向編輯SSSⅡb基因改良稻米品質(zhì)[J].南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2021,44(01):18-26.

[459].蔡欣月. 轉(zhuǎn)錄因子AtVIP1介導(dǎo)IAA與ABA信號(hào)途徑調(diào)控高粱側(cè)根發(fā)育的分子機(jī)制初探[D].黑龍江八一農(nóng)墾大學(xué),2020.

[460].曹彩紅,曹玲玲,趙立群,田雅楠.不同基質(zhì)配比對(duì)草莓脫毒苗馴化移栽的影響[J].蔬菜,2020(06):57-62.

[461].曹珊. 生態(tài)條件和后期干旱對(duì)小麥種子活力形成的影響及生理差異分析[D].山東農(nóng)業(yè)大學(xué),2020.

[462].陳博寧,章潔瓊,崔婭松,霍冬敖,陳慶富.苦蕎遺傳群體農(nóng)藝性狀分析[J].耕作與栽培,2020,40(03):13-16.

[463].陳吉寶.綠豆產(chǎn)量性狀的QTL定位[J].中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2020,22(10):38-48.

[464].陳黎,朱超,朱慶祥,王翠鳴,鮑佳書,莫辰,施婷婷,萬志兵.NaN_3處理對(duì)烏桕種子萌發(fā)及幼苗生長(zhǎng)的影響[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,44(04):47-54.

[465].陳庭木,方兆偉,王寶祥,劉艷,邢運(yùn)高,徐大勇.高黃酮水稻品種資源的鑒定與篩選[J].中國(guó)稻米,2020,26(02):41-43.

[466].陳庭木,邢運(yùn)高,孫志廣,方兆偉,王寶祥,劉艷,徐大勇.水稻高脂肪含量資源篩選[J].江蘇農(nóng)業(yè)科學(xué),2020,48(08):74-77.

[467].陳曦. 多群體定位水稻粒形數(shù)量性狀位點(diǎn)[D].廣西大學(xué),2020.

[468].褚云霞,任麗,鄧姍,李壽國(guó),張靖立,陳海榮.基于DUS測(cè)試的上海地區(qū)小麥新品種評(píng)價(jià)[J].分子植物育種,2020,18(07):2399-2408.

[469].單飛彪,閆文芝,杜瑞霞,王永行,楊欽方,劉春暉,白立華,苗雨,賴運(yùn)平.救荒野豌豆品種DUS測(cè)試主要數(shù)量性狀篩選與評(píng)價(jià)[J].中國(guó)種業(yè),2020(08):60-65.

[470].丁一然,李英文.長(zhǎng)溪河浮游生物群落特征及水質(zhì)評(píng)價(jià)[J].西華師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,41(03):242-248.

[471].董晨星. 草莓種質(zhì)資源生物學(xué)鑒定及對(duì)激素的反應(yīng)[D].山東農(nóng)業(yè)大學(xué),2020.

[472].杜冬冬. 鹽堿條件下植物根際菌促生作用的研究[D].山東農(nóng)業(yè)大學(xué),2020.

[473].范可欣. 小麥NGli-D2、Sec-1~s和1Dx5+1Dy10高代聚合體的品質(zhì)和農(nóng)藝性狀分析[D].山東農(nóng)業(yè)大學(xué),2020.

[474].付路平. 小麥莖稈水溶性碳水化合物含量遺傳解析與標(biāo)記發(fā)掘[D].中國(guó)農(nóng)業(yè)科學(xué)院,2020.

[475].付路平. 小麥莖稈水溶性碳水化合物含量遺傳解析與標(biāo)記發(fā)掘[D].中國(guó)農(nóng)業(yè)科學(xué)院,2020.

[476].龔睿,畢玉科,張杰,奉樹成,張春英.Cu、Zn制劑處理對(duì)貼梗海棠容器苗生長(zhǎng)的影響[J].東北林業(yè)大學(xué)學(xué)報(bào),2020,48(05):16-20.

[477].龔睿,夏溪,張春英.Cu、Zn制劑的化學(xué)控根對(duì)平邑甜茶容器苗根構(gòu)型影響[J].西部林業(yè)科學(xué),2020,49(02):154-159.

[478].谷瑞,徐森,陳雙林,郭子武,章超.鞭長(zhǎng)和鞭徑對(duì)地被竹鞭段繁育容器苗生長(zhǎng)和葉片養(yǎng)分的影響[J].東北林業(yè)大學(xué)學(xué)報(bào),2020,48(09):34-40.

[479].關(guān)志林. 甘藍(lán)型油菜生態(tài)型分化的遺傳基礎(chǔ)解析[D].華中農(nóng)業(yè)大學(xué),2020.

[480].管柳蓉,劉祖培,徐冉,段朋根,張國(guó)政,于海躍,李靜,羅越華,李云海.一個(gè)新的OsBRI1弱等位突變體的鑒定及其調(diào)控種子大小的功能研究[J].植物學(xué)報(bào),2020,55(03):279-286.

[481].管祥洋,孔明,張毅敏,韓巍,楊飛,張志偉,顧詩(shī)云,錢文瀚.滆湖水華初期浮游植物群落特征及與水環(huán)境因子相關(guān)性分析[J].環(huán)境科學(xué)學(xué)報(bào),2020,40(03):901-914.

[482].郭燕,張樹航,李穎,張馨方,王廣鵬.中國(guó)板栗238份品種(系)葉片形態(tài)、解剖結(jié)構(gòu)及其抗旱性評(píng)價(jià)[J].園藝學(xué)報(bào),2020,47(06):1033-1046.

[483].韓志順,鄭敏娜,梁秀芝,康佳惠,陳燕妮.干旱脅迫對(duì)不同紫花苜蓿品種形態(tài)特征和生理特性的影響[J].中國(guó)草地學(xué)報(bào),2020,42(03):37-43.

[484].郝好鑫. 侵蝕環(huán)境下根系功能性狀對(duì)土壤保持的影響及機(jī)制[D].華中農(nóng)業(yè)大學(xué),2020.

[485].何瑞,馬靖福,劉媛,張沛沛,栗孟飛,王彩香,宿俊吉,程宏波,楊德龍.小麥粒形QTL定位及其與水分環(huán)境互作遺傳分析[J].麥類作物學(xué)報(bào),2020,40(08):906-914.

[486].何瑞. 小麥粒形相關(guān)性狀QTL定位及其元分析[D].甘肅農(nóng)業(yè)大學(xué),2020.

[487].洪佳樂. 水稻細(xì)胞分裂素氧化酶OsCKX3的生物學(xué)功能研究[D].浙江師范大學(xué),2020.

[488].胡群. 中期氮肥調(diào)控對(duì)優(yōu)良食味粳稻產(chǎn)量和品質(zhì)的效應(yīng)及其機(jī)理[D].揚(yáng)州大學(xué),2020.

[489].黃婧芬,康敏,殷勤,王艷艷,楊子怡,鄭曉明,喬衛(wèi)華,楊慶文,孫希平.茶陵野生稻導(dǎo)入系遺傳分析及重要性狀相關(guān)QTL鑒定[J].植物遺傳資源學(xué)報(bào),2020,21(03):674-686.

[490].黃夢(mèng)迪,吳會(huì)琴,王娜,楊璞,高金鋒,高小麗.不同品種綠豆理化特性和抗氧化性研究[J].食品研究與開發(fā),2020,41(06):32-37.

[491].黃夢(mèng)迪. 不同品種綠豆及其豆芽品質(zhì)研究與評(píng)價(jià)[D].西北農(nóng)林科技大學(xué),2020.

[492].黃鵬. 山葵植物水培技術(shù)研究[D].成都大學(xué),2020.

[493].黃世杰. 不同番茄品種對(duì)弱光生理響應(yīng)差異的研究[D].山東農(nóng)業(yè)大學(xué),2020.

[494].黃文功. 亞麻和水曲柳對(duì)低鉀或磷耐受性及基因表達(dá)調(diào)控研究[D].東北林業(yè)大學(xué),2020.

[495].計(jì)宏蕊,張夢(mèng)瑜,王曉娜.重金屬鎘影響下油松外生菌根的形態(tài)特征[J].林業(yè)與生態(tài)科學(xué),2020,35(04):377-386.

[496].姜朋. 小麥核心種質(zhì)寧麥9號(hào)與揚(yáng)麥158重要農(nóng)藝性狀及赤霉病抗性的遺傳解析[D].山東農(nóng)業(yè)大學(xué),2020.

[497].姜順邦,韋小麗.水分供應(yīng)量與灌溉方式對(duì)花櫚木容器苗生長(zhǎng)及節(jié)水節(jié)肥的影響[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,48(08):69-77.

[498].黎雨薇. 施氮量對(duì)水稻籽粒灌漿特性、產(chǎn)量和品質(zhì)的影響[D].華中農(nóng)業(yè)大學(xué),2020.

[499].李丹竹,曾寧波,張志飛,劉寧芳,徐倩,胡龍興.漬水脅迫對(duì)不同磷水平下紫花苜蓿根系生長(zhǎng)的影響[J].草地學(xué)報(bào),2020,28(06):1563-1571.

[500].李丹竹,張強(qiáng),徐倩,張志飛,劉寧芳,曾寧波,胡龍興.漬水脅迫對(duì)不同秋眠級(jí)紫花苜蓿苗期根系形態(tài)的影響[J].草地學(xué)報(bào),2020,28(02):420-428.

[501].李發(fā)奎,李金霞,孫小妹,陳年來.黑果枸杞莖葉生長(zhǎng)及其生態(tài)化學(xué)計(jì)量特征對(duì)灌水施肥的響應(yīng)[J].干旱區(qū)研究,2020,37(02):452-461.

[502].李發(fā)奎. 黑果枸杞器官間生態(tài)化學(xué)計(jì)量特征比較研究[D].甘肅農(nóng)業(yè)大學(xué),2019.

[503].李虎,陳傳華,劉廣林,吳子帥,羅群昌,朱其南,李秋雯.銅、鋅肥對(duì)優(yōu)質(zhì)稻桂育9號(hào)的影響效應(yīng)研究[J].江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2020,42(03):448-457.

[504].李虎,黃秋要,陳傳華,劉廣林,吳子帥,羅群昌,朱其南,李秋雯.種植密度和施氮量對(duì)桂育8號(hào)產(chǎn)量及稻米外觀和加工品質(zhì)的影響[J].西南農(nóng)業(yè)學(xué)報(bào),2020,33(04):718-724.

[505].李歡,陳惠查,阮仁超,黎小冰,康秀晗,譚金玉.貴州特色蠶豆種質(zhì)資源主要農(nóng)藝性狀分析與綜合評(píng)價(jià)[J].農(nóng)技服務(wù),2020,37(08):74-76+78.

[506].李嘉琦. 基于GWAS解析水稻粒型變異的遺傳基礎(chǔ)[D].沈陽師范大學(xué),2020.

[507].李進(jìn). 水稻穗長(zhǎng)QTL qPL-3的精細(xì)定位[D].揚(yáng)州大學(xué),2020.

[508].李軍軍. 不同N、P供給水平對(duì)駱駝刺和芨芨草組織養(yǎng)分特征及根系構(gòu)型的影響[D].蘭州大學(xué),2020.

[509].李樂晨. 野生二粒小麥居群進(jìn)化及其產(chǎn)量性狀全基因組關(guān)聯(lián)分析[D].河南大學(xué),2020.

[510].李敏. 玉米自交系種子萌發(fā)期間物質(zhì)利用率差異及全基因組關(guān)聯(lián)分析[D].山東農(nóng)業(yè)大學(xué),2020.

[511].李明,李朝蘇,劉淼,吳曉麗,魏會(huì)廷,湯永祿,熊濤.耕作播種方式對(duì)稻茬小麥根系發(fā)育、土壤水分和硝態(tài)氮含量的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2020,31(05):1425-1434.

[512].李盼盼,朱玉君,郭梁,莊杰云,樊葉楊.利用剩余雜合體衍生的近等基因系精細(xì)定位水稻粒長(zhǎng)微效QTL qGL1.1[J].中國(guó)水稻科學(xué),2020,34(02):125-134.

[513].李盼盼. 水稻粒長(zhǎng)QTL qGL1.1的精細(xì)定位[D].中國(guó)農(nóng)業(yè)科學(xué)院,2020.

[514].李倩,董春娟,田雅楠,曹玲玲,尚慶茂.潮汐灌溉供液高度對(duì)黃瓜穴盤苗生長(zhǎng)發(fā)育與水肥利用的影響[J].中國(guó)蔬菜,2020(01):56-62.

[515].李如雪. 小麥種子活力狀況分析與種子活力評(píng)價(jià)技術(shù)研究[D].山東農(nóng)業(yè)大學(xué),2020.

[516].李珊珊. 調(diào)環(huán)酸鈣和CPPU對(duì)蘋果營(yíng)養(yǎng)生長(zhǎng)和花芽形成的影響[D].山東農(nóng)業(yè)大學(xué),2020.

[517].李月娟,馬錦林,王東雪,魏育,葉航.不同基質(zhì)理化性質(zhì)對(duì)香花油茶扦插生根的影響[J].熱帶農(nóng)業(yè)科學(xué),2020,40(03):25-30.

[518].李月娟,王東雪,魏育,朱慧,馬錦林.不同外源激素處理下香花油茶扦插生根效果的綜合評(píng)價(jià)[J].廣西林業(yè)科學(xué),2020,49(01):49-53.

[519].林升麗. 全基因組和全轉(zhuǎn)錄組關(guān)聯(lián)分析解析油菜千粒重自然變異的遺傳機(jī)制[D].華中農(nóng)業(yè)大學(xué),2020.

[520].劉春花. 供磷水平對(duì)核桃實(shí)生苗生長(zhǎng)、生理特性及土壤養(yǎng)分的影響[D].塔里木大學(xué),2020.

[521].劉寒. 營(yíng)養(yǎng)平衡對(duì)刺五加生長(zhǎng)代謝的生物調(diào)控機(jī)制[D].黑龍江中醫(yī)藥大學(xué),2020.

[522].劉凱強(qiáng),劉文輝,賈志鋒,馬祥,梁國(guó)玲.干旱脅迫對(duì)‘青燕1號(hào)’燕麥器官生長(zhǎng)及水分利用效率的影響[J].草地學(xué)報(bào),2020,28(06):1552-1562.

[523].劉凱強(qiáng). 水分脅迫對(duì)燕麥生長(zhǎng)發(fā)育及產(chǎn)量構(gòu)成的影響[D].青海大學(xué),2020.

[524].劉娜. 過表達(dá)ZmDWF4提高玉米產(chǎn)量的研究[D].山東農(nóng)業(yè)大學(xué),2020.

[525].劉守旭. 玉米Mu/MuDr突變體庫(kù)的構(gòu)建和LSC1基因的精細(xì)定位[D].山東農(nóng)業(yè)大學(xué),2020.

[526].劉同金. 基于機(jī)器視覺的蘋果體尺參數(shù)測(cè)量方法研究[D].塔里木大學(xué),2020.

[527].劉曉偉. 土壤缺鉀對(duì)不同品種冬小麥鉀素吸收、品質(zhì)及碳氮代謝的影響[D].河北農(nóng)業(yè)大學(xué),2020.

[528].劉迎超. 光照強(qiáng)度對(duì)煙草漂浮育苗基質(zhì)理化生物性狀影響研究[D].山東農(nóng)業(yè)大學(xué),2020.

[529].劉盈盈,韋小麗,周紫晶,邵暢暢.硝態(tài)氮供應(yīng)水平對(duì)棕櫚幼苗根系形態(tài)及苗木生長(zhǎng)的影響[J].東北林業(yè)大學(xué)學(xué)報(bào),2020,48(11):1-7.

[530].羅進(jìn). 鈦表面鈷摻入羥基磷灰石復(fù)合涂層的制備及表征和生物活性研究[D].遵義醫(yī)科大學(xué),2020.

[531].呂丹. 苦蕎種質(zhì)資源產(chǎn)量性狀和籽粒黃酮含量與SSR標(biāo)記的關(guān)聯(lián)分析[D].貴州師范大學(xué),2020.

[532].呂立軍,石奡坤,袁瑞江,李衍素,閆妍,于賢昌,賀超興.大蔥品種苗期耐低氮性的綜合評(píng)價(jià)及鑒定指標(biāo)篩選[J].中國(guó)蔬菜,2020(12):49-55.

[533].馬本賀,陶志英,吳早保,吳斌,王海華,徐先棟,陳翠云.大鱗副泥鰍新品系的人工繁殖及胚胎發(fā)育[J].水產(chǎn)科學(xué),2020,39(06):863-870.

[534].馬鴻潤(rùn). 面向人工智能育種的大豆種子表型特征數(shù)據(jù)采集與分析[D].山東大學(xué),2020.

[535].馬瑞,黃成亮,孟英,劉猷紅.播期對(duì)三江平原主栽水稻品種品質(zhì)的影響[J].中國(guó)稻米,2020,26(02):80-83.

[536].馬旭輝. 褪黑素對(duì)玉米根系構(gòu)型及其抗旱性影響的初步研究[D].中國(guó)農(nóng)業(yè)科學(xué)院,2020.

[537].馬艷明,馮智宇,王威,張勝軍,郭營(yíng),倪中福,劉杰.新疆冬小麥品種農(nóng)藝及產(chǎn)量性狀遺傳多樣性分析[J].作物學(xué)報(bào),2020,46(12):1997-2007.

[538].毛恒,熊躍東,李馨,周放姣,胡銚,尹忠良,周萌,鄧化冰.4個(gè)秈稻光溫敏核不育系及其所配組合的稻米品質(zhì)評(píng)價(jià)[J].雜交水稻,2020,35(05):88-93.

[539].牟立同,荀咪,曹輝,楊洪強(qiáng),王利,范偉國(guó),陳金旭,馮豐,李萍.果木屑腐熟物對(duì)平邑甜茶幼苗生長(zhǎng)和土壤養(yǎng)分及酶活性的影響[J].山東農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,51(06):1027-1031.

[540].饒澤來,朱桂才,姚振.融合表達(dá)乙醇酸氧化酶和過氧化氫酶轉(zhuǎn)基因馬鈴薯的表型分析[J].種子,2020,39(03):39-42+51.

[541].饒澤來. 在馬鈴薯中融合表達(dá)GLO-CAT構(gòu)建光呼吸支路的研究[D].長(zhǎng)江大學(xué),2020.

[542].任達(dá).斷根處理對(duì)遼東櫟1年生裸根苗成活率及生長(zhǎng)指標(biāo)的影響[J].山西林業(yè)科技,2020,49(03):13-14+56.

[543].邵暢暢,韋小麗,周紫晶,劉盈盈.供磷水平對(duì)棕櫚幼苗生長(zhǎng)及根系形態(tài)的影響[J].東北林業(yè)大學(xué)學(xué)報(bào),2021,49(01):12-15.

[544].佘遠(yuǎn)國(guó),張瑩,曹克麗,李秀梅,章璐,汪洋.基質(zhì)配方對(duì)油茶容器苗根系生物量及形態(tài)的影響[J].經(jīng)濟(jì)林研究,2020,38(04):11-16.

[545].時(shí)曉磊,嚴(yán)勇亮,石書兵,張金波,王繼慶,謝磊,耿洪偉.NaCl脅迫下小麥根部耐鹽性狀QTL分析[J].新疆農(nóng)業(yè)大學(xué)學(xué)報(bào),2020,43(01):1-9.

[546].宋巖,張銳,魚尚奇,劉春花,高山,王雨,羅立新,張建良.不同施氮水平對(duì)核桃砧木苗形態(tài)特征及生理特性的影響[J].福建農(nóng)業(yè)學(xué)報(bào),2020,35(03):309-316.

[547].孫艷楠. 燕麥不同品種鋅效率的評(píng)價(jià)及對(duì)低鋅脅迫的響應(yīng)[D].內(nèi)蒙古農(nóng)業(yè)大學(xué),2020.

[548].陶菊紅,季向東,王小虎,蘭國(guó)防,陸燕,柯璦,潘斌清,唐樂堯,馬剛,端木銀熙,張濤.三個(gè)江南地區(qū)適用粳稻選育品系的常規(guī)農(nóng)藝性狀[J].常熟理工學(xué)院學(xué)報(bào),2020,34(05):86-90.

[549].陶若芙. 水稻轉(zhuǎn)錄因子OsBBX4的功能研究[D].浙江大學(xué),2020.

[550].田貴生,王志賓,李小坤,朱丹丹,張江林,劉秋霞.“稻-再-油/肥”輪作和施氮對(duì)水稻產(chǎn)量及籽粒灌漿特性的影響[J].中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2021,23(01):146-153.

[551].萬海霞,蔡進(jìn)軍,郭永忠,馬璠,許浩,韓新生,王月玲,董立國(guó).寧夏南部黃土丘陵區(qū)典型草本根系分布特征[J].水土保持研究,2020,27(04):149-156+163.

[552].汪文佳. (普通小麥×長(zhǎng)穗偃麥草)F_1鑒定及生理特性的比較研究[D].淮北師范大學(xué),2020.

[553].王亮. 防治三七黑斑病的多抗霉素發(fā)酵生產(chǎn)技術(shù)研究[D].陜西科技大學(xué),2020.

[554].王順斌. 適應(yīng)亞熱帶環(huán)境的亞麻薺突變體的篩選與研究[D].浙江農(nóng)林大學(xué),2020.

[555].王文靜. 脫水劑和收獲方式對(duì)小麥種子活力的調(diào)控作用[D].山東農(nóng)業(yè)大學(xué),2020.

[556].王文團(tuán). 耐鹽堿細(xì)菌篩選與生物菌肥對(duì)鹽堿地作物的影響[D].山東農(nóng)業(yè)大學(xué),2020.

[557].王小雷,李煒星,曾博虹,孫曉棠,歐陽林娟,陳小榮,賀浩華,朱昌蘭.基于染色體片段置換系對(duì)水稻粒形及千粒重QTL檢測(cè)與穩(wěn)定性分析[J].作物學(xué)報(bào),2020,46(10):1517-1525.

[558].王宇智. 氮肥運(yùn)籌對(duì)旱直播水稻產(chǎn)量、品質(zhì)及氮素利用率的影響[D].沈陽農(nóng)業(yè)大學(xué),2020.

[559].王園園. 叢枝菌根真菌和鉀調(diào)控寧夏枸杞耐鹽及鉀吸收機(jī)制[D].西北農(nóng)林科技大學(xué),2020.

[560].王澤鵬,岳松青,荀咪,石鈞元,張瑋瑋,楊洪強(qiáng).H_2S預(yù)處理對(duì)NaCl脅迫下平邑甜茶根系氧化損傷和細(xì)胞死亡的影響[J].植物生理學(xué)報(bào),2020,56(10):2241-2247.

[561].王澤鵬. NaHS對(duì)NaCl脅迫下平邑甜茶根系離子流及相關(guān)基因表達(dá)的影響[D].山東農(nóng)業(yè)大學(xué),2020.

[562].衛(wèi)平洋,裘實(shí),唐健,肖丹丹,朱盈,劉國(guó)棟,邢志鵬,胡雅杰,郭保衛(wèi),高尚勤,魏海燕,張洪程.安徽沿淮地區(qū)優(yōu)質(zhì)高產(chǎn)常規(guī)粳稻品種篩選及特征特性[J].作物學(xué)報(bào),2020,46(04):571-585.

[563].魏琦. 硫酸鉀/銨片劑肥料對(duì)蘋果根區(qū)土壤環(huán)境及幼樹生長(zhǎng)的影響[D].山東農(nóng)業(yè)大學(xué),2020.

[564].烏國(guó)俊,龔梨霞,李丹竹,張志飛.原花青素對(duì)酸銅脅迫下紫花苜蓿種子萌發(fā)的影響[J].草學(xué),2020(02):40-45+53.

[565].吳江,龐瀾,阿里木江·阿不都熱合曼,朱勇荷,馬秀英,陳鵬,張荔霜,岳躍明,吳濤.聚維酮碘胃部灌洗對(duì)內(nèi)鏡下黏膜剝離術(shù)患者胃部細(xì)菌菌落及感染率的影響[J].中華醫(yī)院感染學(xué)雜志,2020,30(06):903-907.

[566].肖月華,高建芹,王潔,鄒玉國(guó),陳松,周曉嬰,龍衛(wèi)華,彭琦.種子處理劑對(duì)甘藍(lán)型油菜生長(zhǎng)發(fā)育及菌核病的效應(yīng)[J].江蘇農(nóng)業(yè)科學(xué),2020,48(23):111-114.

[567].熊潔,丁戈,李書宇,陳倫林,宋來強(qiáng).鋁脅迫對(duì)不同耐鋁油菜品種苗期生長(zhǎng)發(fā)育和養(yǎng)分吸收的影響[J].華北農(nóng)學(xué)報(bào),2020,35(06):165-171.

[568].徐飛,王紓馨,程甲,張毓梅,焦彬彬.可視化自動(dòng)識(shí)別技術(shù)與傳統(tǒng)人眼識(shí)別在大米外觀品質(zhì)檢驗(yàn)中的比較分析[J].食品安全質(zhì)量檢測(cè)學(xué)報(bào),2020,11(20):7280-7286.

[569].徐易如. 小麥苗期生物量、成熟期農(nóng)藝性狀對(duì)氮、磷、鉀脅迫的響應(yīng)及其遺傳解析[D].山東農(nóng)業(yè)大學(xué),2020.

[570].許趙蒙. 水稻紋枯病抗性相關(guān)基因OsSBR1的功能鑒定和組學(xué)分析[D].浙江師范大學(xué),2020.

[571].薛其勤,別茹,常宇涵,邢明,楊會(huì),張昆,劉風(fēng)珍,萬勇善.花生種皮顏色及花青素含量的遺傳分析[J].花生學(xué)報(bào),2020,49(01):19-24.

[572].晏權(quán). GZ95-6分枝麥穗分枝性狀的遺傳分析及改良[D].貴州大學(xué),2020.

[573].楊莉. 普通小麥籽粒相關(guān)性狀QTL定位與驗(yàn)證[D].中國(guó)農(nóng)業(yè)科學(xué)院,2020.

[574].楊娜,楊鑫,李英文,劉智皓,陳啟亮,沈彥君.重慶市涪陵區(qū)梨香溪流域和麻溪河流域浮游生物及魚類資源現(xiàn)狀[J].重慶師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,37(06):63-77.

[575].殷敏,劉少文,褚光,徐春梅,王丹英,章秀福,陳松.長(zhǎng)江下游稻區(qū)不同類型雙季晚粳稻產(chǎn)量與生育特性差異[J].中國(guó)農(nóng)業(yè)科學(xué),2020,53(05):890-903.

[576].于瀟. 煙臺(tái)扇貝養(yǎng)殖區(qū)水質(zhì)變化及其對(duì)扇貝生長(zhǎng)的影響[D].煙臺(tái)大學(xué),2020.

[577].俞寧寧. 水楊酸羥化酶在調(diào)節(jié)水稻抗病和生長(zhǎng)中的功能研究[D].浙江師范大學(xué),2020.

[578].張芳,任毅,嚴(yán)勇亮,付婧璇,耿洪偉.小麥TaGS-D1與TaFlo2-A1等位變異對(duì)粒重的影響[J].麥類作物學(xué)報(bào),2020,40(05):533-546.

[579].張國(guó)慶. 西藏“一江兩河”流域典型區(qū)段藻類群落時(shí)空分布特征及其與環(huán)境因子間的關(guān)系[D].西藏大學(xué),2020.

[580].張洪超. 三唑酮在不同作物、不同土壤類型中的吸收、轉(zhuǎn)運(yùn)規(guī)律及特性[D].浙江大學(xué),2020.

[581].張紀(jì). 引進(jìn)大麥種質(zhì)資源籽粒性狀間關(guān)系研究與評(píng)價(jià)利用[D].西北農(nóng)林科技大學(xué),2020.

[582].張嘉宇. 水汽壓差(VPD)與鉀素對(duì)不同溫度下番前營(yíng)養(yǎng)吸收與光合生理的影響[D].西北農(nóng)林科技大學(xué),2020.

[583].張金波,王小波,嚴(yán)勇亮,肖菁,彭惠茹,叢花.新疆春小麥育成品種耐熱性評(píng)價(jià)[J].麥類作物學(xué)報(bào),2020,40(09):1055-1063.

[584].張金波,嚴(yán)勇亮,王小波,路子峰,肖菁,彭惠茹,叢花.新疆春小麥育成品種遺傳演變分析[J].新疆農(nóng)業(yè)科學(xué),2020,57(03):418-426.

[585].張俊,郝西,朱亞娟,臧秀旺,劉娟,張佳蕾,張曼,崔亞男,湯豐收,董文召.不同保水劑用量對(duì)花生發(fā)育及氮素積累的影響[J].花生學(xué)報(bào),2020,49(02):43-48.

[586].張淼. 超級(jí)稻內(nèi)2優(yōu)6號(hào)產(chǎn)量性狀QTL的定位[D].中國(guó)農(nóng)業(yè)科學(xué)院,2020.

[587].張曉蕊,謝露露,董春娟,尚慶茂.葉片切除對(duì)番茄扦插苗莖基部糖含量及不定根發(fā)生的影響[J].中國(guó)蔬菜,2020(11):60-65.

[588].張曉蕊. 茄果類蔬菜扦插苗莖基部碳水化合物積累與不定根發(fā)生[D].中國(guó)農(nóng)業(yè)科學(xué)院,2020.

[589].張鄭偉. 中國(guó)多年生野生大豆Glycine tomentella和Glycine tabacina的遺傳多樣性研究[D].中國(guó)農(nóng)業(yè)科學(xué)院,2020.

[590].趙晨浩. 新型保水劑和保水型控釋肥的研制及對(duì)土壤持水性狀改良的機(jī)制[D].山東農(nóng)業(yè)大學(xué),2020.

[591].趙靚,戰(zhàn)勇,張恒斌,曾凱,劉濤.灌水量和種植密度互作對(duì)籽瓜產(chǎn)量及籽粒性狀的影響[J].北方園藝,2020(22):1-9.

[592].趙坤. 固氮藍(lán)藻和葉面肥對(duì)水稻生育及產(chǎn)量品質(zhì)的影響[D].黑龍江八一農(nóng)墾大學(xué),2020.

[593].鄭冉,黎瑞源,呂丹,鄭俊青,黃娟,石桃雄,陳慶富.苦蕎重組自交系群體籽粒性狀遺傳變異分析[J].安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),2020,47(05):818-825.

[594].鄭冉. 苦蕎重組自交系群體籽粒黃酮含量與農(nóng)藝性狀的QTL定位[D].貴州師范大學(xué),2020.

[595].朱紅菊,趙勝杰,路緒強(qiáng),何楠,劉文革.二倍體和四倍體西瓜幼苗根系形態(tài)差異比較[J].中國(guó)瓜菜,2020,33(11):18-21.

[596].朱麗霞,韓琰,陸鑾眉,張瓊,蔡月琴,陳清森.四種花灌木對(duì)鎘的耐性和富集特性研究[J].閩南師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,33(01):74-80.

[597].朱麗霞,林逸涵,陸鑾眉,張瓊,蔡月琴,魯俊,韓欣剛.茉莉花對(duì)四種重金屬污染土壤的抗性和富集特性研究[J].福建熱作科技,2020,45(02):17-22.

[598].朱琳. 花生種子大小相關(guān)基因及其定位研究[D].山東師范大學(xué),2020.

[599].朱秀茹,王永舟,蕭楚健,方瀟,周文滔,趙李,楊建偉,蘆芮冰,高聰.農(nóng)家旱稻品種特性的鑒定[J].金陵科技學(xué)院學(xué)報(bào),2020,36(01):65-70.

[600].朱亞瓊,于輝,鄭偉,黎松松,娜爾克孜,劉岳含,郝帥,艾麗菲熱.燕麥+箭筈豌豆混播草地混播優(yōu)勢(shì)的測(cè)度與影響因素分析[J].草業(yè)學(xué)報(bào),2020,29(01):74-85.

[601].鄒其珍. 四個(gè)水稻油菜素內(nèi)酯降解相關(guān)基因的功能研究[D].中國(guó)農(nóng)業(yè)科學(xué)院,2020.

[602].Ahong Wang, Qingqing Hou, Lizhen Si. et al. The PLATZ Transcription Factor GL6 Affects Grain Length and Number in Rice[J]Plant Physiology,2019.(SC-E,IF6.305)

[603].Cao, P., Liang, X., Zhao, H. et al. Identification of the quantitative trait loci controlling spike-related traits in hexaploid wheat (Triticum aestivum L.). Planta 250, 1967–1981 (2019). https://xs.scihub.ltd/https://doi.org/10.1007/s00425-019-03278-0.(SC-G,IF3.06)

[604].Chen, Z., Cheng, X., Chai, L. et al. Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (Triticum aestivum L.). Theor Appl Genet 133, 149–162 (2020). https://xs.scihub.ltd/https://doi.org/10.1007/s00122-019-03447-5. (SC-G,IF3.926)

[605].Christine J.Bergman. 9 - Rice end-use quality analysis[J]. Rice, 2019, Pages 273-337.(SC-E,IF3.513)

[606].CongqiZhang, RuiZhong, ZhongsuoWang. et al. Intra-annual variation of zooplankton community structure and dynamics in response to the changing strength of bio-manipulation with two planktivorous fishes[J].Ecological Indicators, Volume 101, June 2019, Pages 670-678.(AlgaeC,IF4.49)

[607].Dongzhi Wang, Kang Yu, Di Jin. et al. ALI-1, candidate gene of B1 locus, is associated with awn length and grain weight in common wheat[J]. 2019

[608].Dongzhi Wang, Kang Yu, Di Jin. et al. Natural variations in the promoter of Awn Length Inhibitor 1 (ALI‐1) are associated with awn elongation and grain length in common wheat[J].The Plant Journal,19 October 2019.(SC-G,IF5.726)

[609].Du, B., Wang, Q., Sun, G. et al. Mapping dynamic QTL dissects the genetic architecture of grain size and grain filling rate at different grain-filling stages in barley. Sci Rep 9, 18823 (2019). https://xs.scihub.ltd/https://doi.org/10.1038/s41598-019-53620-5.

[610].Fan Xu, Jiuyou Tang, Shaopei Gao. et al. Control of rice pre‐harvest sprouting by glutaredoxin‐mediated abscisic acid signaling[J].The Plant Journal, 22 August 2019.(SC-E,IF5.726)

[611].Fang, C., Li, L., He, R. et al. Identification of S23 causing both interspecific hybrid male sterility and environment-conditioned male sterility in rice. Rice 12, 10 (2019). https://xs.scihub.ltd/https://doi.org/10.1186/s12284-019-0271-4.(SC-E,IF3.513)

[612].Fengxian Zhen, Wei Wang, Haoyu Wang. et al. Effects of short-term heat stress at booting stage on rice-grain quality[J].Crop and Pasture Science 70(6) 486-498 https://doi.org/10.1071/CP18260.(SC-E,IF1.33)

[613].Gongduan Fan, Zhong Chen, Bo Wang. et al. Photocatalytic Removal of Harmful Algae in Natural Waters by AgAgCl@ZIF-8 Coating under Sunlight[J].Catalysts 2019, 9(8), 698; https://doi.org/10.3390/catal9080698.(AlgeaC,IF3.444)

[614].Guan, P., Di, N., Mu, Q. et al. Use of near-isogenic lines to precisely map and validate a major QTL for grain weight on chromosome 4AL in bread wheat (Triticum aestivum L.). Theor Appl Genet 132, 2367–2379 (2019). https://xs.scihub.ltd/https://doi.org/10.1007/s00122-019-03359-4.(SC-G, IF3.926)

[615].Hanyang Zhang, Jianhang Jiao & Hui Jin (2019) Degradable poly-L-lysinemodified PLGA cell microcarriers with excellent antibacterial and osteogenic activity, Artificial Cells, Nanomedicine, and Biotechnology, 47:1, 2391-2404, DOI: 10.1080/21691401.2019.1623230.(HiCC,IF4.462)

[616].Hao, H., Di, H., Jiao, X. et al. Fine roots benefit soil physical properties key to mitigate soil detachment capacity following the restoration of eroded land. Plant Soil 446, 487–501 (2020). https://xs.scihub.ltd/https://doi.org/10.1007/s11104-019-04353-x.(LA-S,IF3.259)

[617].He C, Ding Z, Mubeen S, Guo X, Fu H, Xin G. 2020. Evaluation of three wheat (Triticum aestivum L.) cultivars as sensitive Cd biomarkers during the seedling stage. PeerJ 8:e8478 https://doi.org/10.7717/peerj.8478.

[618].Jiajia Lia, Jinghui Zhaoa, Yinghui Li. et al. Identification of a novel seed size associated locus SW9-1 in soybean[J]. The Crop Journal, Volume 7, Issue 4, August 2019, Pages 548-559.(SC-G,IF3.179)

[619].Jiangzhe Zhao, Ningning Yu, Min Ju. et al. ABC transporter OsABCG18 controls the shootward transport of cytokinins and grain yield in rice[J]. Journal of Experimental Botany, Volume 70, Issue 21, 1 November 2019, Pages 6277–6291(SC-G,IF5.36)

[620].Jinshan Zhang, Zhenyu Zhou, Jinjuan Bai. et al. Disruption of MIR396e and MIR396f improves rice yield under nitrogen-deficient conditions[J]. National Science Review, nwz142, https://doi.org/10.1093/nsr/nwz142.(SC-A,IF13.222)

[621].Kang Chen, Yongtai Yin, Si Liu. et al. Genome-wide identification and functional analysis of oleosin genes in Brassica napus L.[J]. BMC Plant Biology (2019) 19:294.(SC-G,IF3.67)

[622].Kang Yu, Dongcheng Liu, Yong Chen. et al. Unraveling the genetic architecture of grain size in einkorn wheat through linkage and homology mapping and transcriptomic profiling[J]. Journal of Experimental Botany, Vol. 70, No. 18 pp. 4671–4687, 2019.(SC-G,IF5.36)

[623].Kashif HUSSAIN, ZHANG Yingxing, Workie ANLEY. et al. Association Mapping of Quantitative Trait Loci Increase Grain Size in An Introgression Line Derived by Oryza Ruffipogon Griff[J]. Rice Science, 2020.

[624].Ke‐Ke Sun, Wen‐Sheng, Yu Jia‐Jia Jiang. et al. Mismatches between the resources for adult herbivores and their offspring suggest invasive Spartina alterniflora is an ecological trap[J].Journal Of Ecology,04 September 2019 https://doi.org/10.1111/1365-2745.13277(LA-S,IF5.687)

[625].Lei Liu, Yubo Wang, Zhijia Gai. et al. Responses of Soil Microorganisms and Enzymatic Activities to Alkaline Stress in Sugar Beet Rhizosphere[J].Pol. J. Environ. Stud. Vol. 29, No. 1 (2020), 739-748(LA-S,IF1.186)

[626].LI Xiao-lan, LÜ Xiang, WANG Xiao-hong. et al. Biotic and abiotic stress-responsive genes are stimulated to resist drought stress in purple wheat[J]. Journal of Integrative Agriculture 2019, 18(0): 2–19.(SC-G,IF1.337)

[627].Meijuan Li, Jiaen Zhang, Shiwei Liu. et al. Mixed‐cropping systems of different rice cultivars have grain yield and quality advantages over mono‐cropping systems[J].Journal Of The Science Of Food And Agriculture, Volume99, Issue7 May 2019 Pages 3326-3334.(IF2.422)

[628].Meijuan Lia, Ronghua Lia, Shiwei Liu. et al. Rice-duck co-culture benefits grain 2-acetyl-1-pyrroline accumulation and quality and yield enhancement of fragrant rice[J].The Crop Journal,Volume 7, Issue 4, August 2019, Pages 419-430.(SC-E,IF3.179)

[629].Mengsi Kong, Qiao Qiao, Xiaolin Ma. et al. Isolation and functional analysis of the zmARM4 locus in a novel maize (Zea mays) grain‐filling mutant[J]. Plant Breeding,01 December 2019(SC-G,IF1.251)

[630].Mohammad AbubakarSiddika, JunZhanga, JinChen. et al. Responses of indica rice yield and quality to extreme high and low temperatures during the reproductive period[J].European Journal of Agronomy,Volume 106, May 2019, Pages 30-38.(SC-E,IF3.384)

[631].Pan, L., Lie, G., Xue, L. et al. Changes of Cinnamomum camphora root characteristics and soil properties under ozone stress in South China. Environ Sci Pollut Res 26, 30684–30692 (2019).(LA-S,IF2.914)

[632].Paul R. Armstrong, Anna M. McClung, Elizabeth B. Maghirang. et al. Detection of chalk in single kernels of long‐grain milled rice using imaging and visiblenear‐infrared instruments[J]. Cereal Chemistry,14 September 2019.(SC-G,IF1.289)

[633].Qiao-YunLi, Qiao-QiaoXu, Yu-MeiJiang. et al. The correlation between wheat black point and agronomic traits in the North China Plain[J].Crop Protection,Volume 119, May 2019, Pages 17-23(SC-G,IF2.172)

[634].Qifei Wang, Genlou Sun, Xifeng Ren. et al.Dissecting the Genetic Basis of Grain Size and Weight in Barley (Hordeum vulgare L.) by QTL and Comparative Genetic Analyses[J].Front. Plant Sci., 24 April 2019 | https://doi.org/10.3389/fpls.2019.00469.(SC-G,IF4.106)

[635].Ren, H., Wen, L., Guo, Y. et al. Expressional and Functional Verification of the Involvement of CmEXPA4 in Chrysanthemum Root Development. J Plant Growth Regul 38, 1375–1386 (2019). https://xs.scihub.ltd/https://doi.org/10.1007/s00344-019-09940-x.(LA-S,IF2.179)

[636].Ruixin Xu, Wei Hu, Yanchen Zhou. et al. Use of near-infrared spectroscopy for the rapid evaluation of soybean [Glycine max (L.) Merri.] water soluble protein content[J].Spectrochimica Acta Part A-Molecular And Biomolecular Spectroscopy,224(2020)(SC-G,IF2.931)

[637].Shi‐Xin Zhou, Yong Zhu, Liang‐Fang Wang. et al. Osa‐miR1873 fine‐tunes rice immunity against Magnaporthe oryzae and yield traits[J]. JIPB,21 December 2019.

[638].ShuhaoLia, YimanLia, XinruiHe. et al. Response of water balance and nitrogen assimilation in cucumber seedlings to CO2 enrichment and salt stress[J].Plant Physiology and Biochemistry, Volume 139, June 2019, Pages 256-263.(LA-S,IF3.404)

[639].Tiecheng Bai, Nannan Zhang, Benoit Mercatoris. et al. Improving Jujube Fruit Tree Yield Estimation at the Field Scale by Assimilating a Single Landsat Remotely-Sensed LAI into the WOFOST Model[J].Remote Sens. 2019, 11(9), 1119; https://doi.org/10.3390/rs11091119.(LA-S,IF4.118)

[640].Wang, W., Shen, J., Wang, C. et al. Safety and Feasibility of Helical I-125 Seed Implants Combined with Transcatheter Arterial Chemoembolization in Hepatocellular Carcinomas with Main Portal Vein Tumor Thrombus. Cardiovasc Intervent Radiol 42, 1420–1428 (2019). https://xs.scihub.ltd/https://doi.org/10.1007/s00270-019-02256-z.(IF1.928)

[641].Wencai, D., Fangfei, C., Qiang, F. et al. Effect of soybean roots and a plough pan on the movement of soil water along a profile during rain. Appl Water Sci 9, 138 (2019). https://xs.scihub.ltd/https://doi.org/10.1007/s13201-019-1025-6.

[642].Wu, J., Wang, L., Fu, J. et al. Resequencing of 683 common bean genotypes identifies yield component trait associations across a north–south cline. Nat Genet 52, 118–125 (2020). https://xs.scihub.ltd/https://doi.org/10.1038/s41588-019-0546-0.(SC-G,IF31.077)

[643].Xi, Y., Liu, H., Johnson, D. et al. Selenium enhances Conyza canadensis phytoremediation of polycyclic aromatic hydrocarbons in soil. J Soils Sediments 19, 2823–2835 (2019). https://xs.scihub.ltd/https://doi.org/10.1007/s11368-019-02274-x.(IF2.669)

[644].Xia Zhang, Junling Pang, Xuhui Ma. et al. Multivariate analyses of root phenotype and dynamic transcriptome underscore valuable root traits and water‐deficit responsive gene networks in maize[J]. Plant Direct,Volume3, Issue3 March 2019 e00130

[645].Xiaolan Li, Xiang Lv, Xiaohong Wang. et al. Effects of abiotic stress on anthocyanin accumulation and grain weight in purple wheat[J].Crop and Pasture Science 69(12) 1208-1214 https://doi.org/10.1071/CP18341(SC-G,IF1.33)

[646].XiaolongYang, BenfuWang, LiangChen. et al. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality[J].Scientific reports,2019.(SC-E,IF4.011)

[647].Xiaoqian Wang, Luhao Dong, Junmei Hu. et al. Dissecting genetic loci affecting grain morphological traits to improve grain weight via nested association mapping[J].Theoretical and Applied Genetics (2019) 132:3115–3128.(SC-E,IF3.926)

[648].Xin, F., Zhu, T., Wei, S. et al. QTL Mapping of Kernel Traits and Validation of a Major QTL for Kernel Length-Width Ratio Using SNP and Bulked Segregant Analysis in Wheat. Sci Rep 10, 25 (2020). https://xs.scihub.ltd/https://doi.org/10.1038/s41598-019-56979-7.(SC-G,IF4.011)

[649].Xinyu Chen, Zepeng Yin, Yang Yin. et al. E?ects of Elevated Root-Zone CO2 on Root Morphology and Nitrogen Metabolism Revealed by Physiological and Transcriptome Analysis in Oriental Melon Seedling Roots[J].Int. J. Mol. Sci. 2020, 21(3), 803; https://doi.org/10.3390/ijms21030803

[650].Xiuying Gao, Jia-Qi Zhang, Xiaojun Zhang. et al. Rice qGL3OsPPKL1 Functions with the GSK3SHAGGY-Like Kinase OsGSK3 to Modulate Brassinosteroid Signaling[J]. The Plant Cell, May 2019. DOI: https://doi.org/10.1105/tpc.18.00836.(SC-E,IF8.631)

[651].XUE Pao, ZHANG Ying-xin, LOU Xiang-yang. et al. Mapping and genetic validation of a grain size QTL qGS7.1 in rice (Oryza sativa L.)[J].Journal of Integrative Agriculture 2019, 18(8): 1838–1850.(SC-G,IF1.337)

[652].Ya‐Fan Zhao, Ting Peng, Hong‐Zheng Sun. et al. miR1432‐OsACOT (Acyl‐CoA thioesterase) module determines grain yield via enhancing grain filling rate in rice[J].Plant Biotechnology Journal, 05 September 2018.(SC-G,IF6.84)

[653].Yang, L., Zhao, D., Meng, Z. et al. QTL mapping for grain yield-related traits in bread wheat via SNP-based selective genotyping. Theor Appl Genet (2019). https://xs.scihub.ltd/https://doi.org/10.1007/s00122-019-03511-0.(SC-G,IF3.996)

[654].Yanhong Song, Guangbin Luo, Lisha Shen. et al. TubZIP28, a novel bZIP family transcription factor from Triticum urartu, and TabZIP28, its homologue from Triticum aestivum, enhance starch synthesis in wheat[J]. The New Phytologist Trust,18 January 2020.

[655].Ying Xuan, Yang Yi, He Liang. et al. Effects of Meteorological Factors on the Yield and Quality of Special Rice in Different Periods after Anthesis[J].Agricultural Sciences, 2019, 10, 451-475.

[656].Yingying Liu, Xiaoli Wei , Zijing Zhou. et al. In?uence of Heterogeneous Karst Microhabitats on the Root Foraging Ability of Chinese Windmill Palm (Trachycarpus fortunei) Seedlings[J].Int. J. Environ. Res. Public Health 2020, 17(2), 434; https://doi.org/10.3390/ijerph17020434.

[657].YingyingYang, ShiwuGaoYa, chunSuZhaoliLin. et al. Transcripts and low nitrogen tolerance Regulatory and metabolic pathways in sugarcane under low nitrogen stress[J].Environmental and Experimental Botany,Volume 163, July 2019, Pages 97-111(LA-S,IF3.712)

[658].Yiwang Zhu, Yarong Lin, Songbiao Chen. et al. CRISPR/Cas9‐mediated functional recovery of the recessive rc allele to develop red rice[J].Plant Biotechnology Journal (2019) 17, pp. 2096–2105.(SC-E,IF6.84)

[659].Yongbo Hong, Qunen Liu, Yongrun Cao. et al. The OsMPK15 Negatively Regulates Magnaporthe oryza and Xoo Disease Resistance via SA and JA Signaling Pathway in Rice[J].Front. Plant Sci., 21 June 2019 | https://doi.org/10.3389/fpls.2019.00752. (SC-G,IF4.106)

[660].Yunhua Chia, Kimani Wilson, Zhiquan Liu. et al. Vacuolar invertase genes SbVIN1 and SbVIN2 are differently associated with stem and kernel traits in sorghum (Sorghum bicolor)[J].The Crop Journal, Available online 29 October 2019(SC-E,IF3.179)

[661].YuzhouHuang, XiXiao, CaicaiXu. et al. Seagrass beds acting as a trap of microplastics - Emerging hotspot in the coastal region[J].Environmental Pollution, Volume 257, February 2020, 113450(AlgaeC,IF5.714)

[662].Zhang, H., Zhou, L., Xu, H. et al. The qSAC3 locus from indica rice effectively increases amylose content under a variety of conditions. BMC Plant Biol 19, 275 (2019). https://xs.scihub.ltd/https://doi.org/10.1186/s12870-019-1860-5.(SC-G,IF3.67)

[663].Zhang, K., Nie, L., Cheng, Q. et al. Effective editing for lysophosphatidic acid acyltransferase 2/5 in allotetraploid rapeseed (Brassica napus L.) using CRISPR-Cas9 system. Biotechnol Biofuels 12, 225 (2019). https://doi.org/10.1186/s13068-019-1567-8.(SC-G,IF5.452)

[664].ZhiqiangGao, QunenLiu, YingxinZhang. et al. A proteomic approach identifies novel proteins and metabolites for lesion mimic formation and disease resistance enhancement in rice[J]. Plant Science, Volume 287, October 2019, 110182.(SC-G,IF3.785)

[665].Zhiyu Fenga, Zhongqi Qia, Dejie Du. et al. Characterization of a new hexaploid triticale 6D(6A) substitution line with increased grain weight and decreased spikelet number[J].The Crop Journal, Volume 7, Issue 5, October 2019, Pages 598-607.(SC-G,IF3.179)

[666].JIN Jian-chu, LI Xiao-xiang, LI Yong-chao, et al. Genetic Similarity Analysis of Hunan Rice Landraces with Same or Similar Name in Household and Genebank Conservations[J]. Agricultural Science & Technology, 2018, 19(3): 9-20.

[667].Kashif Hussain.普通野生稻主效粒型QTL的遺傳剖析[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2019

[668].Mohammad Abubakar Siddik.抽穗前后極端溫度對(duì)秈稻產(chǎn)量和品質(zhì)的影響及其機(jī)理[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2019

[669].Sadaruddin Chachar.C3植物秈、粳水稻光合作用相關(guān)基因及其與DNA甲基化關(guān)系的研究[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2019

[670].白磊.施氮量與密度對(duì)高油大豆光合生產(chǎn)及產(chǎn)質(zhì)量的影響[D].東北農(nóng)業(yè)大學(xué),2019

[671].白云星,周運(yùn)超.馬尾松人工林根系對(duì)近自然經(jīng)營(yíng)措施的響應(yīng)[J].中南林業(yè)科技大學(xué)學(xué)報(bào),第39卷第11期2019年11月

[672].曹立勇,程式華,洪永波等.OsMPK15基因、編碼蛋白和重組載體在水稻中的應(yīng)用:CN 110184286 A,2019.08.30

[673].曾新穎,郭建斌,趙姣姣等.花生籽仁大小相關(guān)性狀QTL定位[J].作物學(xué)報(bào) ACTA AGRONOMICA SINICA 2019, 45(8): 1200?1207

[674].陳敬.長(zhǎng)江上游雜交水稻親本遺傳多樣性及其品質(zhì)分析[D].西南科技大學(xué),2019

[675].陳思,韓麗君.皂莢物候期初步研究[J].山西林業(yè)科技,第 48卷第3期,2019年9月

[676].陳總會(huì),趙長(zhǎng)臣,江小燕等.復(fù)合微生物菌劑對(duì)鯽魚生長(zhǎng)及消化功能的影響[J].水產(chǎn)養(yǎng)殖,第40卷 第7期,2019年7月

[677].陳祖靜,高曉翠,周瑋等.不同施肥量對(duì)辣木幼苗生長(zhǎng)、光合和養(yǎng)分特征的影響[J].林業(yè)與環(huán)境科學(xué).2019 年 4 月第 35 卷第 2 期

[678].戴妙飛.ICARDA小麥種質(zhì)抗條銹資源篩選和抗病基因分析[D].西北農(nóng)林科技大學(xué),2019

[679].單云鵬,陳新慧,萬平等.小豆種質(zhì)資源苗期抗旱性評(píng)價(jià)及抗旱資源篩選[J].植物遺傳資源學(xué)報(bào),2019,20(5):1151-1159

[680].單云鵬.小豆種質(zhì)資源抗旱性篩選鑒定及相關(guān)基因關(guān)聯(lián)分析[D].北京農(nóng)學(xué)院,2019

[681].鄧嬌燕.1-甲基環(huán)丙烯(1-MCP)緩解黃瓜和辣椒高溫傷害的研究[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2019

[682].段朋根,徐勁松,李云海.用于增加籽粒產(chǎn)量的方法:CN 110603264 A,2019.12.20

[683].段偉,王保平,喬杰等.水肥控制對(duì)楸葉泡桐苗期生長(zhǎng)和生物量及其分配的影響[J].中南林業(yè)科技大學(xué)學(xué)報(bào),第39卷第10期2019年10月

[684].范萍.一種減輕赤潮的可降解塑料袋及其制作方法:CN 110003593 A,2019.07.12

[685].范昱.中國(guó)苦蕎種質(zhì)資源性狀評(píng)價(jià)和蕎麥屬植物親緣關(guān)系分析[D].成都大學(xué),2019

[686].奉寶兵,魏祥進(jìn),焦桂愛等.CRISPR/Cas9技術(shù)編輯淀粉合成基因PUL[J].中國(guó)稻米 2019,25(5):99-104

[687].符超.小麥籽粒缺陷型QTL定位和候選基因分析[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2019

[688].付士朋,沈宏偉,王謙博等.刺五加種苗質(zhì)量分級(jí)標(biāo)準(zhǔn)及其方法的優(yōu)選[J].中國(guó)實(shí)驗(yàn)方劑學(xué)雜志,第 25 卷第 17 期,2019 年 9 月

[689].高文碩.插秧密度對(duì)水稻生長(zhǎng)發(fā)育及產(chǎn)量形成的影響[D].東北農(nóng)業(yè)大學(xué),2019

[690].龔守賀,鄭應(yīng)龍,陶志英等.洪門水庫(kù)浮游生物的群落結(jié)構(gòu)特征[J].江西水產(chǎn)科技 2019 年第 4 期

[691].郭軍,李家前,李豪圣等.高大山羊草Pm13染色體片段對(duì)小麥農(nóng)藝和產(chǎn)量性狀的影響[J].麥類作物學(xué)報(bào),2019,39(4):387-392

[692].郭軍,劉建軍,李豪圣等.一種快速檢測(cè)長(zhǎng)穗偃麥草高產(chǎn)基因的分子:CN 109266779 A,2019.01.25

[693].郭軍盧明嬌,武智民等.1Ee染色體對(duì)小麥農(nóng)藝和品質(zhì)性狀的影響研究[J].植物遺傳資源學(xué)報(bào) 2019,20(4):854-860

[694].賀翔翔.兩個(gè)甘藍(lán)型油菜遺傳作圖群體的重測(cè)序及QTL定位分析[D].華中農(nóng)業(yè)大學(xué),2019

[695].賀鑫.不同磷水平下燕麥磷素營(yíng)養(yǎng)及根系差異蛋白質(zhì)組學(xué)研究[D].內(nèi)蒙古農(nóng)業(yè)大學(xué),2019

[696].胡丹丹.新型甘藍(lán)型油菜的群體改良和雜種優(yōu)勢(shì)分析[D].華中農(nóng)業(yè)大學(xué),2019

[697].胡曉飛,趙建國(guó),高利巖等.石墨烯對(duì)樹莓組培苗生長(zhǎng)發(fā)育影響[J].新型碳材料,第34卷第5期2019年10月

[698].胡曉飛.石墨烯對(duì)樹莓生長(zhǎng)的影響及其在防治植物枯萎病中的應(yīng)用[D].太原理工大學(xué),2019

[699].扈戰(zhàn)強(qiáng),黃建穎,方長(zhǎng)云等.基于計(jì)算機(jī)視覺技術(shù)測(cè)定大米吸水膨脹及飽和時(shí)間的方法:CN 110596329 A,2019.12.20

[700].黃冰艷,齊飛艷 ,孫子淇等.以分子標(biāo)記輔助連續(xù)回交快速提高花生品種油酸含量及對(duì)其后代農(nóng)藝性狀的評(píng)價(jià)[J].作物學(xué)報(bào),2019, 45(4): 546−555,DOI: 10.3724/SP.J.1006.2019.84096

[701].黃思思.基于SNP的150份硬粒小麥43個(gè)性狀的關(guān)聯(lián)分析[D].華中農(nóng)業(yè)大學(xué),2019

[702].焦灰敏,黨艷青,周小魏.蘋果砧木實(shí)生后代與親本之間相關(guān)性狀的研究[J].江蘇農(nóng)業(yè)科學(xué) 2019 年第 47 卷第 17 期

[703].荊瑞勇,王麗艷,鄭桂萍等.水稻萌發(fā)期和幼苗期耐鹽性鑒定指標(biāo)篩選及綜合評(píng)價(jià)[J].黑龍江八一農(nóng)墾大學(xué)學(xué)報(bào),第31卷第6期,2019年12月

[704].李發(fā)奎.黑果枸杞器官間生態(tài)化學(xué)計(jì)量特征比較研究[D].甘肅農(nóng)業(yè)大學(xué),2019

[705].李洪果,陳達(dá)鎮(zhèn),勞慶祥等.基于表型性狀初步構(gòu)建格木核心種質(zhì)[J].分子植物育種,2019 年,第 17 卷,第 20 期,第 6881-6890頁

[706].李洪果,陳達(dá)鎮(zhèn),許靖詩(shī)等.瀕危植物格木天然種群的表型多樣性及變異[J].林業(yè)科學(xué),第55卷第4期2019年4月,doi: 10.11707 / j.1001-7488.20190408

[707].李錦明.基于機(jī)器視覺的玉米考種技術(shù)研究[D].杭州:杭州電子科技大學(xué),2019

[708].李倩,田雅楠,尚慶茂等.潮汐灌溉供液高度對(duì)番茄穴盤苗水分和氮素利用效率的影響[J].華北農(nóng)學(xué)報(bào) ·2019 ,34 ( 6 ) : 126 -132

[709].李倩.番茄潮汐式育苗營(yíng)養(yǎng)液細(xì)菌和真菌群落結(jié)構(gòu)動(dòng)態(tài)分析[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2019

[710].李盛婷,楊城,王冉等.草珊瑚植株表型對(duì)光照和氮素營(yíng)養(yǎng)的響應(yīng)[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào) 2019, 25(8): 1441–1450

[711].李濤,陸炳,李俊等.2個(gè)小麥株高QTL位點(diǎn)驗(yàn)證及其對(duì)產(chǎn)量相關(guān)性狀的效應(yīng)分析[J].西南農(nóng)業(yè)學(xué)報(bào),2019年32卷3期

[712].劉臣艷,王德爐.藍(lán)莓根系形態(tài)對(duì)不同肥種的響應(yīng)特征及模糊綜合評(píng)價(jià)[J].經(jīng)濟(jì)林研究,第37卷第3期2019年9月

[713].劉臣艷.藍(lán)莓根系對(duì)不同肥種的生態(tài)響應(yīng)研究[D].貴州大學(xué),2019

[714].劉士玲,陳琳,楊保國(guó)等.氮磷肥對(duì)西南樺無性系生物量分配和根系形態(tài)的影響[J].南京 林 業(yè) 大 學(xué) 學(xué) 報(bào) ( 自 然 科 學(xué) 版 )第 43 卷 第 5 期,2019 年 9 月

[715].劉士玲,賈宏炎,陳琳等.容器規(guī)格和添加生物炭的基質(zhì)配方對(duì)西南樺幼苗生長(zhǎng)的影響[J].生態(tài)學(xué)雜志 Chinese Journal of Ecology 2019,38( 9) : 2875-2882

[716].劉小玲,張亨,陳文等.種植物生長(zhǎng)調(diào)節(jié)劑對(duì)楝葉吳萸葉綠素?zé)晒夂透瞪L(zhǎng)的影響[J].林業(yè)與環(huán)境科學(xué),第35卷第4期2019年8月

[717].劉鑫銘,陳婷,劉錫銘等.含氨基酸水溶性肥料對(duì)巨峰葡萄的影響[J].福建農(nóng)業(yè)學(xué)報(bào) 2019,34(7):782-789

[718].龍海,李濤,鄧光兵等.一種用于輔助檢測(cè)小麥高單穗小穗數(shù)性狀[J].CN 109811074 A,2019.05.28

[719].龍起樟,黃永蘭,唐秀英等.利用CRISPR_Cas9敲除OsNramp5基因創(chuàng)制低鎘秈稻[J].中國(guó)水稻科學(xué)(Chin J Rice Sci), 2019, 33(5): 407-420

[720].羅艷,屈洋,楊清華等.播期對(duì)糜子農(nóng)藝性狀及淀粉理化性質(zhì)的影響[J].中國(guó)農(nóng)業(yè)科學(xué) 2019,52(22):4154-4165

[721].牟立同,土壤鉆孔和果木屑腐熟物對(duì)蘋果樹生長(zhǎng)及根區(qū)環(huán)境的影響[D].山東農(nóng)業(yè)大學(xué),2019

[722].倪明理,任勃,陳燦等.稻魚(鰍)耦合對(duì)稻米品質(zhì)的影響[J].作物研究,2019,33(5):398-401

[723].彭緒冰,邱法展,龔佃明等.玉米百粒重及粒長(zhǎng)性狀緊密連鎖的分子標(biāo)記及應(yīng)用:CN 110106278 A,2019.08.09

[724].祁金玉,鄧?yán)^峰,尹大川等.外生菌根菌對(duì)油松幼苗抗氧化酶活性及根系構(gòu)型的影響.生態(tài)學(xué)報(bào),2019,39( 8) :2826-2832.

[725].卿冬進(jìn),劉開強(qiáng),鄧國(guó)富等.基于PARMS技術(shù)的水稻粒形基因GW8分子標(biāo)記的開發(fā)[J].西南農(nóng)業(yè)學(xué)報(bào),2019年32卷3期

[726].任紅劍,柳斌,張沖等.山東地區(qū)茶用元寶楓品系的比較與篩選[J].山東林業(yè)科技 2019 年第 2 期

[727].石妮.長(zhǎng)江重慶段四大家魚國(guó)家級(jí)水產(chǎn)種質(zhì)資源保護(hù)區(qū)魚類時(shí)空分布特征的研究[D].重慶師范大學(xué),2019

[728].史鵬.NaCl脅迫對(duì)3種沙棘幼苗生長(zhǎng)發(fā)育的影響[J].山 西 林 業(yè) 科 技,2019 年 3 月,第 48 卷 第 1 期

[729].蘇美玲.四種砧木對(duì)沃柑嫁接親和性和生長(zhǎng)結(jié)果比較研究[D].廣西大學(xué),2019

[730].唐鑫華,郭佳卓,張麗等.NaCl脅迫處理對(duì)馬鈴薯組培苗生理性狀和熒光參數(shù)的影響[J].馬鈴薯產(chǎn)業(yè)與健康消費(fèi),2019

[731].萬海霞,馬璠,許浩等.寧夏南部黃土丘陵區(qū)典型草本群落根系垂直分布特征與土壤團(tuán)聚體的關(guān)系[J].水土保持研究,第26卷第6期,2019年12月

[732].王漢中,師家勤,李娜等.油菜BnbHLH60基因在提高油菜產(chǎn)量中的應(yīng)用:CN 106434740 B,2019.06.21

[733].王進(jìn)賓.水稻異分支酸合成酶OsICS1在水楊酸合成途徑中的功能研究[D].浙江師范大學(xué),2019

[734].王磊,申皓月,駱靈喜等.再論硅藻生長(zhǎng)促進(jìn)復(fù)合物對(duì)藍(lán)藻水華的控制作用[J].廣東化工,第46卷總第405期,2019年第19期

[735].王麗艷,唐金敏,鄭桂萍等.水稻萌發(fā)期和幼苗期耐低溫指標(biāo)體系構(gòu)建及綜合評(píng)價(jià)[J].中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2019,21( 10) : 58-65

[736].王勝凡,王波,王磊等.益生藻生長(zhǎng)促進(jìn)劑及其制備方法和應(yīng)用:CN 109810903 A,2019.05.28

[737].王文慧.水稻千粒重QTLqTGW1.2a的解析與精細(xì)定位[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2019

[738].王小波,關(guān)攀鋒,辛明明等.小麥種質(zhì)資源耐熱性評(píng)價(jià)[J].中國(guó)農(nóng)業(yè)科學(xué),2019,52(23):4191-4200

[739].王曉琪,姚媛媛,劉之廣等.宛氏擬青霉提取物對(duì)鹽脅迫下水稻幼苗的生理適應(yīng)性[J].農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2020,37(1): 98-105

[740].韋如萍,胡德活,晏姝等.植物生長(zhǎng)調(diào)節(jié)劑和基質(zhì)種類對(duì)杉木無性系瓶外生根組培苗質(zhì)量的影響[J].西南林業(yè)大學(xué)學(xué)報(bào),第39卷第6期,2019 年11月

[741].魏珂.調(diào)控水稻淀粉代謝及糖轉(zhuǎn)運(yùn)關(guān)鍵基因表達(dá)的效應(yīng)研究[D].揚(yáng)州大學(xué),2019

[742].魏其超,張海洋,劉文萍等.干旱脅迫下芝麻籽粒品質(zhì)及抗氧化能力變化分析[J].河南農(nóng)業(yè)科學(xué),2019,48( 9) : 30-39

[743].魏其超.干旱處理對(duì)芝麻品質(zhì)和營(yíng)養(yǎng)特性的影響研究[D].河南工業(yè)大學(xué),2019

[744].吳敏,鄧平,趙英等.不同林齡紅錐人工林細(xì)根垂直分布和衰老生理特征[J].生態(tài)學(xué)雜志 Chinese Journal of Ecology 2019,38( 9) : 2622-2629

[745].吳少俊.基于計(jì)算機(jī)視覺的水稻葉綠素含量測(cè)定[J].農(nóng)機(jī)化研究,2020 年 4 月第 4 期

[746].伍曉明,閆貴欣,曾長(zhǎng)立等.一種蛋白及其基因在控制植物種子性狀中的應(yīng)用:CN 110606878 A,2019.12.24

[747].伍曉明,閆貴欣,張美麗等.一種蛋白及其基因在控制粒重和/或含油量中的應(yīng)用:CN 110606879 A,2019.12.24

[748].伍曉明,閆貴欣,張美麗等.一種蛋白及其基因在控制植物性狀中的應(yīng)用:CN 110564735 A,2019.12.13

[749].謝嬌.普通小麥RIL群體籽粒性狀與穗部性狀相 關(guān)性分析及人工合成小麥RIL群體創(chuàng)建與初步分析[D].西北農(nóng)林科技大學(xué),2019

[750].謝立紅,黃慶陽,曹宏杰等.五大連池火山色木槭葉功能性狀特征[J].生物多樣性,2019, 27 (3): 286–296

[751].辛芳.小麥籽粒形狀主效QTL定位分析[D].西北農(nóng)林科技大學(xué),2019

[752].徐高偉.大壟膜上交錯(cuò)雙行丹參移栽機(jī)關(guān)鍵部件研究及整機(jī)設(shè)計(jì)[D].東北農(nóng)業(yè)大學(xué),2019

[753].徐志華,許 浩,李生寶.百里香群落根系特征研究[J].南方論壇,2019年6月上

[754].徐志華.黃土丘陵區(qū)主要草地群落根系特征研究[D].寧夏大學(xué),2019

[755].薛亞榮,巴特爾·巴克.沙塵和遮陰復(fù)合脅迫對(duì)西梅葉片光合作用的影響[J].中國(guó)農(nóng)業(yè)氣象,2019,40(3):170-179

[756].鄢鵬,李國(guó)雷,冉紅達(dá)等.蘸根處理方式對(duì)彰武松造林成效的影響-以北京山區(qū)為例[J].水土保持通報(bào),第39卷第5期2019年10月

[757].嚴(yán)青青,張巨松,徐海江等.鹽堿脅迫對(duì)海島棉幼苗生物量分配和根系形態(tài)的影響[J].生態(tài)學(xué)報(bào),第39卷第20期2019年10月

[758].顏丹丹.小麥抗倒伏相關(guān)性狀的全基因組關(guān)聯(lián)分析[D].山東農(nóng)業(yè)大學(xué),2019

[759].楊崇毅.大麥籽粒大小的全基因組關(guān)聯(lián)分析[D].浙江大學(xué),2019

[760].楊光,梁坤南,黃桂華等.柚木無性系扦插育苗研究[J].中南林業(yè)科技大學(xué)學(xué)報(bào),第39卷第10期2019年10月

[761].楊瀾,黃腐酸對(duì)平邑甜茶和八棱海棠耐鹽生理特性的影響[D].山東農(nóng)業(yè)大學(xué),2019

[762].楊勇,陸彥,郭淑青等.秈稻背景下導(dǎo)入Wxin等位基因改良稻米食味和理化品質(zhì)[J].作物學(xué)報(bào) ACTA AGRONOMICA SINICA 2019, 45(11): 1628?1637

[763].楊哲.棗實(shí)生與雜交后代群體主要性狀的遺傳變異分析[D].塔里木大學(xué),2019

[764].葉李波,江麗偉,江春華等.日本花柏人工林生長(zhǎng)過程及其模型研究[J].綠色科技,2019

[765].殷月輝,小麥-長(zhǎng)穗偃麥草異染色體系篩選與鑒定[J].山 東 農(nóng) 業(yè) 科 學(xué) 2019,51( 4) : 1 ~ 6

[766].殷月輝.普通小麥中國(guó)春背景異染色體系的篩選與鑒定[D].山東農(nóng)業(yè)大學(xué),2019

[767].游慧,向珣朝,楊博文等.重穗型變異材料爪哇稻22的生理性狀和遺傳特性[J].農(nóng) 業(yè) 生 物 技 術(shù) 學(xué) 報(bào),2019, 27(6): 961~971

[768].游佳,谷晗,朱澤等.水稻粒質(zhì)量和粒形QTL定位及粒長(zhǎng)位點(diǎn)qGL3.2的鑒定[J].南京農(nóng)業(yè)大學(xué)學(xué)報(bào) 2019,42( 4) : 612-621

[769].于瀟,盧鈺博,李希磊等.萊州灣浮游植物時(shí)空變化及其與環(huán)境因子的關(guān)系[J].煙臺(tái)大學(xué)學(xué)報(bào)( 自然科學(xué)與工程版),第33卷第1期,2020年1月

[770].余 明,蔡金桓,薛立等.樟樹(Cinnamomum)幼苗細(xì)根形態(tài)對(duì)氮磷添加和幼苗密度的響應(yīng)[J].生態(tài)學(xué)報(bào),第39卷第20期2019年10月

[771].余佳雯.過表達(dá)OsDWF4和OsBZR1基因?qū)λ井a(chǎn)量和品質(zhì)的影響[D].揚(yáng)州大學(xué),2019

[772].張愛敏,周國(guó)順,付麗軍等.低溫脅迫下油菜素內(nèi)酯對(duì)黃瓜種子萌發(fā)及幼苗生長(zhǎng)的影響[J].中國(guó)瓜菜,2019,32(12):31-36

[773].張國(guó)慶,董麗麗,楊雨玲等.新安江流域水西河(黃山學(xué)院段)浮游植物群落結(jié)構(gòu)周年調(diào)查[J].黃山學(xué)院學(xué)報(bào),第21卷第5期,2019年10月

[774].張宏娟,李玉瑩,苗麗麗等.小麥轉(zhuǎn)錄因子基因TaNAC67參與調(diào)控穗長(zhǎng)和每穗小穗數(shù)[J].作物學(xué)報(bào) ACTA AGRONOMICA SINICA 2019, 45(11): 1615?1627

[775].張宏娟.小麥TaNAC67基因抗逆分子機(jī)理及優(yōu)異單倍型發(fā)掘[D].甘肅農(nóng)業(yè)大學(xué),2019

[776].張金汕.勻播和密度對(duì)小麥萌發(fā)及幼苗性狀的影響[J].中國(guó)農(nóng)學(xué)通報(bào) 2019.35(25):8-15

[777].張俊,劉 娟,臧秀旺等.麥秸覆蓋對(duì)土壤理化性質(zhì)及夏花生生長(zhǎng)發(fā)育的影響[J].土壤通報(bào),Vol . 50 , No . 3.Jun . , 2019

[778].張林,卞中,劉巧泉等.水稻粒長(zhǎng)基因功能標(biāo)記及其應(yīng)用:CN 110616277 A,2019.12.27

[779].張鵬,楊穎,奚如春等.油茶大規(guī)格容器苗質(zhì)量及其造林效果評(píng)價(jià)[J].經(jīng)濟(jì)林研究,Vol.37 No.1 Mar.2019

[780].張平,伍洪銘,張福鱗等.通過RNAi技術(shù)下調(diào)OsLOX提高水稻種子耐儲(chǔ)性[J].南京農(nóng)業(yè)大學(xué)學(xué)報(bào) 2019,42( 6) : 996-1005

[781].張勝忠,苗華榮,趙立波等.花生種子長(zhǎng)寬比性狀遺傳分析和相關(guān)SSR標(biāo)記篩選[J].花生學(xué)報(bào)2019,18(3):1-8

[782].張偉珍,段廷玉.AM真菌對(duì)箭筈豌豆響應(yīng)豌豆蚜取食的影響[J].草地學(xué)報(bào),第27卷第6期,2019年11月

[783].張曉霞,楊會(huì),張秀榮等.花生子仁長(zhǎng)寬及單仁重的遺傳分析[J].山東農(nóng)業(yè)科學(xué) 2019,51( 9) : 73 ~ 78,86

[784].張新友,鄭崢,齊飛艷等.一種采用分生孢子接種鑒定花生網(wǎng)斑病抗病性的方法:CN 110100685 A,2019.08.09

[785].張玉娟.硬粒小麥灌漿特性及粒重與SNP標(biāo)記的關(guān)聯(lián)分析[D].華中農(nóng)業(yè)大學(xué),2019

[786].張鋆.綠豆開花結(jié)莢習(xí)性及籽粒形成過程中物質(zhì)積累研究[D].西北農(nóng)林科技大學(xué),2019

[787].趙春華,崔法,張萌娜等.與小麥旗葉寬度主效QTL緊密連鎖的分子標(biāo)記及應(yīng)用:CN 109913574 A,2019.06.21

[788].趙達(dá).稻米品質(zhì)性狀的全基因組關(guān)聯(lián)分析及品質(zhì)相關(guān)基因的遺傳解析[D].華中農(nóng)業(yè)大學(xué),2019

[789].趙思怡,陳菲,張鶴山等.51份紅三葉種質(zhì)資源萌發(fā)期耐銅性評(píng)價(jià)[J].種子,第38卷 第4期 2019年4月

[790].趙瀅.華南水稻重要農(nóng)藝性狀演變規(guī)律及粒型性狀GWAS分析[D].長(zhǎng)江大學(xué),2019

[791].趙占營(yíng),楚光紅,李思忠等.栽培密度對(duì)高產(chǎn)大豆根系生長(zhǎng)及花莢形成的影響[J].干旱地區(qū)農(nóng)業(yè)研究,第37卷第5期2019年9月

[792].鄭敏娜,韓志順,梁秀芝等.不同生長(zhǎng)年限紫花苜蓿根系形態(tài)特征分析[J].中國(guó)草地學(xué)報(bào),第41卷第6期,2019年11月

[793].周雷,游艾青,李二敬等.水稻細(xì)長(zhǎng)?;騍LG7分子標(biāo)記引物及其應(yīng)用:CN 110592079 A,2019.12.20

[794].周帥,郝向春,翟瑜等.4種激素浸種對(duì)南極假山毛櫸萌發(fā)與幼苗生長(zhǎng)的影響[J].西北林學(xué)院學(xué)報(bào)2019,34(2):92-97

[795].朱安東.水稻微效粒重粒形QTL定位及其中5個(gè)QTL的驗(yàn)證[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2019

[796].朱燦,劉慧剛,顧彥等.外源硒對(duì)萘脅迫下車前草生長(zhǎng)及土壤修復(fù)能力的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2019,38(11): 2511-2519

[797].朱紅菊.四倍體西瓜幼苗耐鹽機(jī)制研究[D].華中農(nóng)業(yè)大學(xué),2019

[798].朱盈,徐棟,胡蕾等.江淮優(yōu)良食味高產(chǎn)中熟常規(guī)粳稻品種的特征[J].作物學(xué)報(bào),2019, 45(4):578−588, DOI:10.3724/SP.J.1006.2019.82040

[799].朱玉君.水稻千粒重QTL_qTGW10_20.8的精細(xì)定位和候選基因分析[D].華中農(nóng)業(yè)大學(xué),2019

[800].朱子超,何永歆,歐陽杰等.水稻早代跟蹤葉綠素b含量創(chuàng)制耐寡照不育系初探[J].南方農(nóng)業(yè),,第13卷第34期,2019年12月

[801].鄒金偉.ICARDA引進(jìn)小麥的品質(zhì)性狀優(yōu)異種質(zhì)鑒定[D].西北農(nóng)林科技大學(xué),2019

[802].Huang, X. et al. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat. Commun. 6:6258 doi: 10.1038/ncomms7258 (2015).

[803].Chunyun Jiang,Danny Tholen,Jiajia Mercedes Xu,Changpeng Xin,Hui Zhang,Xinguang Zhu,Yanxiu Zhao.Increased expression of mitochondria-localized carbonic anhydrase activity resulted in an increased biomass accumulation in Arabidopsis thaliana[J].Journal of Plant Biology,December 2014,Volume 57,Issue 6,pp 366-374

[804].Jianguo Mana,Dong Wanga,Philip J. Whiteb,Zhenwen Yu.The length of micro-sprinkling hoses delivering supplemental irrigation affects photosynthesis and dry matter production of winter wheat[J].Field Crops Research,Volume 168,November 2014,Pages 65-74

[805].Pengliang Yao,Civil Eng.,Xinguang Dong.Using HYDRUS-2D Simulate Soil Water Dynamic in jujube root zone under drip irrigation[J].Water Resource and Environmental Protection,Vol.1:684-688

[806].Q Qiu,JY Li,JH Wang,Q He,Y Su.Interactions between Soil Water and Fertilizer Application on Fine Root Biomass Yield and Morphology of Catalpa bungei Seedling[J].Applied Mechanics and Materials,Vol.700(2015)pp 323-333

[807].Xiaodong Wang,Huiqing Liu.RESPONSES OF TREE ISLANDS TO AIR TEMPERATURE CHANGE AT TREELINE ON NORTH-FACING SLOPES OF THE CHANGBAI MOUNTAINS[J].Physical Geography,2011,32,4,pp.374–392

[808].Xingang Zhou,Fengzhi Wu.Artificially applied vanillic acid changed soil microbial communities in the rhizosphere of cucumber (Cucumis sativus L.)[J].Canadian Journal of Soil Science,2013,93(1):13-21

[809].Changyun Fang,Xianqiao Hu,Chengxiao Sun,Binwu Duan,Lihong Xie,Ping Zhou.Simultaneous Determination of Multi Rice Quality Parameters Using Image Analysis Method.Food Analytical Methods[J].January 2015,Volume 8,Issue 1,pp 70-78

[810].Xingang Zhou,Gaobo Yu,Fengzhi Wu.Responses of Soil Microbial Communities in the Rhizosphere of Cucumber (Cucumis sativus L.) to Exogenously Applied p-Hydroxybenzoic Acid[J].J Chem Ecol,2012,38:975–983

[811].Zhou X,Wu F.p-Coumaric Acid Influenced Cucumber Rhizosphere Soil Microbial Communities and the Growth of Fusarium oxysporum f.sp. cucumerinum Owen[J]. PLoS ONE 7(10): e48288. doi:10.1371/journal.pone.0048288

[812].蔡堅(jiān),丁曉綱,張應(yīng)中,劉喻娟,李永泉,朱雯,張祥宇.缺素對(duì)廣寧紅花油茶幼苗生長(zhǎng)的影響[J].中國(guó)農(nóng)學(xué)通報(bào),2014,30(28):53-56

[813].陳功,張其圣,余文華,宋萍,劉竹,李恒,游敬剛.四川泡菜乳酸菌多樣性及其功能特性[J].食品與發(fā)酵工業(yè),2013,39(3):1-4

[814].陳為序,李瑤,李太強(qiáng),鮑印廣,童依平,王洪剛,李興鋒.小偃麥種質(zhì)系山農(nóng)0095耐低磷脅迫特性研究[J].麥類作物學(xué)報(bào),2013,33(4):765-770

[815].陳為序.小偃麥種質(zhì)系山農(nóng)303耐低磷特性研究及相關(guān)性狀QTL分析[D].泰安:山東農(nóng)業(yè)大學(xué),2013

[816].陳媛文,高健,張穎,馬艷軍,齊飛艷.水培條件下不同磷水平對(duì)毛竹實(shí)生苗生長(zhǎng)發(fā)育的影響[J].熱帶亞熱帶植物學(xué)報(bào),2013,21(1):78-84

[817].陳媛文.毛竹實(shí)生苗對(duì)磷的響應(yīng)及PheWRKY2基因的研究[D].北京:中國(guó)林業(yè)科學(xué)研究院,2012

[818].崔嘉成,劉佳,梅德圣,李云昌,付麗,彭鵬飛,王軍,胡瓊.甘藍(lán)型油菜裂角相關(guān)性狀的遺傳與相關(guān)分析[J].作物學(xué),2013,39(10):1791-1798

[819].崔嘉成,梅德圣,李云昌,劉佳,付麗,彭鵬飛,王軍,王會(huì),胡瓊.甘藍(lán)型油菜角果相關(guān)性狀對(duì)抗裂角性遺傳貢獻(xiàn)率分析[J].中國(guó)油料作物學(xué)報(bào),2013,35(5):461-468

[820].崔嘉成.雜交油菜優(yōu)異親本重要農(nóng)藝性狀的遺傳分析[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2013

[821].丁曉綱,劉喻娟,張曉珊,張應(yīng)中,蔡堅(jiān),賈朋,陳清鳳.不同濃度指數(shù)施肥對(duì)美麗異木棉等3個(gè)樹種幼苗生長(zhǎng)的影響[J].生態(tài)環(huán)境學(xué)報(bào),2013, 22(4):619-624

[822].丁曉綱,劉喻娟,張應(yīng)中,蔡堅(jiān),梁梓毅,朱雯,陳清鳳.不同氮素濃度指數(shù)施肥對(duì)銀樺、藍(lán)花楹幼苗生長(zhǎng)及其根系和葉片的影響[J].中國(guó)農(nóng)學(xué)通報(bào)2013,29(19):39-45

[823].丁曉綱,張應(yīng)中,劉喻娟,張祥宇,陳清鳳,蔡 堅(jiān),李永泉,李遠(yuǎn)平.廣東省油茶幼林大田平衡施肥技術(shù)[J].經(jīng)濟(jì)林研究,2013,31(3):21-28

[824].丁曉綱.黑木相思苗期平茬與施肥技術(shù)研究[D].北京:北京林業(yè)大學(xué),2011

[825].馮梅.胡楊葉形變化與個(gè)體發(fā)育階段的關(guān)系研究[D].阿拉爾:塔里木大學(xué),2014

[826].高曉旭.黃瓜、番茄幼苗下胚軸徒長(zhǎng)制御及作用機(jī)理[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2011

[827].關(guān)頌?zāi)?不同氮效率黃瓜品種根際土壤生態(tài)環(huán)境特征研究[D].哈爾濱:東北農(nóng)業(yè)大學(xué),2013

[828].郭孝玉,劉燕,孫玉軍,寧陽翠.使用萬深LA-S年輪分析儀測(cè)定年輪寬度[J].江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2011,33(S1):68-72

[829].郭孝玉.長(zhǎng)白落葉松人工林樹冠結(jié)構(gòu)及生長(zhǎng)模型研究[D].北京:北京林業(yè)大學(xué),2013

[830].何茜,丁曉綱,王冉,李吉躍,張方秋,潘文.指數(shù)施肥下黑木相思根系特征值的動(dòng)態(tài)變化[J].廣東林業(yè)科技,2011,27(5):1-6

[831].何茜,王冉,李吉躍,張方秋,丁曉綱,潘文.不同濃度指數(shù)施肥方法下馬來沉香與土沉香苗期需肥規(guī)律[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2012,18(5):1193-1203

[832].胡迪.植物葉片測(cè)量方法的研究[D].沈陽:沈陽工業(yè)大學(xué),2011

[833].江靜.水稻粒型性狀的遺傳研究及主效QTL的精細(xì)定位[D].金華:浙江師范大學(xué),2014

[834].姜爽.不同氮效率黃瓜品種篩選及其根系生物學(xué)差異[D].哈爾濱:東北農(nóng)業(yè)大學(xué),2012

[835].李國(guó)瑜,李瑤,陳為序,王洪剛.濟(jì)麥22及其轉(zhuǎn)TaPHR1基因植株的磷脅迫反應(yīng)研究[J].山東農(nóng)業(yè)科學(xué),2012,44(9):63-69

[836].李國(guó)瑜.小麥磷高效基因TaPHR1的轉(zhuǎn)化及遺傳分析[D].泰安:山東農(nóng)業(yè)大學(xué),2012

[837].李楠,廖康,成小龍,耿文娟,李永閑,寧萬軍,邱晨.‘庫(kù)爾勒香梨’根系分布特征研究[J].果樹學(xué)報(bào),2012,29(6):1036-1039

[838].李楠.‘庫(kù)爾勒香梨’生長(zhǎng)發(fā)育動(dòng)態(tài)及施肥技術(shù)研究[D].烏魯木齊:新疆農(nóng)業(yè)大學(xué),2013

[839].李欣怡,王海珍,李加好.胡楊不同冠層葉片的形態(tài)特征及對(duì)水脅迫的響應(yīng)[J].安徽農(nóng)業(yè)科學(xué),2015,43(5):156-158

[840].李瑤.山東省小麥品種(系)及攜帶TaPHR1基因新種質(zhì)的磷效率鑒定[D].泰安:山東農(nóng)業(yè)大學(xué),2013

[841].林文春,余守武,阮關(guān)海,樊葉楊,謝建坤.水稻千粒重QTL qtgw1基因的精細(xì)定位[J].核農(nóng)學(xué)報(bào),2014,28(2):0217-0223

[842].林文春.水稻第1染色體上千粒重和粒型QTL的精細(xì)定位[D].南昌:江西師范大學(xué),2013

[843].林雯,何茜,蘇艷,李吉躍,王軍輝,邱權(quán).干旱脅迫對(duì)歐洲云杉水分生理特征的影響[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,42(6):69-77

[844].劉德良,張曉珊,丁曉綱.指數(shù)施肥對(duì)美麗異木棉幼苗生長(zhǎng)及光合生理的影響[J].林業(yè)世界,2013,2,40-46

[845].劉君紅.海島棉高產(chǎn)群體生長(zhǎng)分析及水分生理指標(biāo)空間變異規(guī)律研究[D].阿拉爾:塔里木大學(xué),2011

[846].劉明峰,胡先朋,廖宜濤,廖慶喜,萬星宇,冀牧野.不同油菜品種適栽期機(jī)械化移栽植株形態(tài)特征研究[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(s1):79-88

[847].劉奇華,吳修,陳博聰,信彩云,陳峰,王瑜,孫召文,馬加清.灌溉方式對(duì)黃淮稻區(qū)優(yōu)質(zhì)粳米品質(zhì)的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2014,25(9):2583-2590

[848].劉艷春.稻米外觀品質(zhì)相關(guān)性狀QTL分析[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2012

[849].陸燕梅,徐柄光,沈有信.云南石林地區(qū)喀斯特山地萌生團(tuán)花新木姜子年輪特征與環(huán)境因子的關(guān)系[J].廣西植物,2014,34(2):276-280

[850].羅麗麗.水稻穎殼厚度及相關(guān)性狀的遺傳分析和QTL定位[D].杭州:杭州師范大學(xué),2013

[851].馬科.粳稻多基因型雜種優(yōu)勢(shì)利用研究[D].長(zhǎng)春:吉林農(nóng)業(yè)大學(xué),2014

[852].樸錦,王坤,具紅光.關(guān)蒼術(shù)種子種用性能比較研究[J].種子,2015,34(2):28-31

[853].齊明陽.日光溫室黃瓜CO2施肥技術(shù)研究[D].洛陽:河南科技大學(xué),2014

[854].邱權(quán),李吉躍,王軍輝,何茜,蘇艷,馬建偉,杜坤,潘昕.干旱脅迫下青藏高原4種灌木生物量和根系變化特征及抗旱性[J].西北林學(xué)院學(xué)報(bào),2013,28(3):1-6

[855].邱權(quán),潘昕,李吉躍,何茜,蘇艷,董蕾.速生樹種尾巨桉和竹柳幼苗的光合特性和根系特征比較[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2014,34(1):53-59

[856].邱權(quán),潘昕,李吉躍,王軍輝,董蕾,馬建偉,杜坤.青藏高原20種灌木生長(zhǎng)時(shí)期根系特征及抗旱性初探[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2014,43(3):29-37

[857].邱權(quán),潘昕,李吉躍,王軍輝,馬建偉,杜 坤.青藏高原20種灌木抗旱形態(tài)和生理特征[J].植物生態(tài)學(xué)報(bào),2014,38(6):562-575

[858].史婷婷,深浩,林濤,楊清,黃三文.黃瓜葉面積主效QTL小葉2基因(ll2)的遺傳定位[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2014,22(4):415-421

[859].宋宏峰,郭磊,張斌斌,汪晨雨.除草劑對(duì)毛桃幼苗生長(zhǎng)與光合的影響[J].園藝學(xué)報(bào),2014,41(11):2208-2214

[860].宋秖蘇,華嬌,藍(lán)景針,夏世峰.轉(zhuǎn)盤斜刮式光電自動(dòng)數(shù)粒儀設(shè)計(jì)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),第42卷第11期

[861].蘇軍,張武君,杜琳,宋亞娜,付艷萍.磷脅迫下蔗糖對(duì)水稻苗期根適應(yīng)性和磷酸轉(zhuǎn)運(yùn)蛋白基因表達(dá)的影響[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2014,22(11):1334-1340

[862].孫坤,蔣碧玉,張世虎,侯勤正,蘇雪.西藏沙棘葉片性狀對(duì)水熱條件的響應(yīng)研究[J].西北師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,50(6):71-76

[863].孫藝文.不同作物殘茬及秸稈對(duì)連作土壤的修復(fù)作用[D].哈爾濱:東北農(nóng)業(yè)大學(xué),2013

[864].湯秋香,林濤,蘇秀娟,石大偉,高文偉,田立文,郭仁松,葉強(qiáng)濤,林毅.施氮對(duì)南疆干旱荒漠綠洲棗棉間作棉田根際微生物區(qū)系的影響研究[J].中國(guó)農(nóng)學(xué)通報(bào),2014,30(21):118-123

[865].田福寬.水稻產(chǎn)量相關(guān)性狀的遺傳研究和QTL定位[D].杭州:杭州師范大學(xué),2013

[866].王靜.不同磷水平處理對(duì)水稻幼苗生長(zhǎng)及部分礦質(zhì)元素吸收的影響[D].重慶:西南大學(xué),2014

[867].王力朋,晏紫伊,李吉躍,王軍輝,何茜,蘇艷.指數(shù)施肥對(duì)楸樹無性系生物量分配和根系形態(tài)的影響[J].生態(tài)學(xué)報(bào),2012,32(23):7452-7462

[868].王冉,何茜,丁曉綱,李吉躍,張方秋,朱報(bào)著,蘇艷.N素指數(shù)施肥對(duì)沉香苗期光合生理特性的影響[J].北京林業(yè)大學(xué)學(xué)報(bào),2011,33(6):58-64

[869].王冉,何茜,丁曉綱,李吉躍,張方秋,朱報(bào)著.氮磷鉀配比施肥對(duì)珍貴樹種馬來沉香苗期光合生理特性的影響[C].中國(guó)科協(xié)年會(huì): 中國(guó)西部生態(tài)林業(yè)和民生林業(yè)與科技創(chuàng)新學(xué)術(shù)研討會(huì),2013

[870].王冉,李吉躍,張方秋,朱報(bào)著,潘文.不同施肥方法對(duì)馬來沉香和土沉香苗期根系生長(zhǎng)的影響[J].生態(tài)學(xué)報(bào),2011,31(1):0098-0106

[871].王冉.沉香植物苗期營(yíng)養(yǎng)特性與施肥效應(yīng)研究[D].北京:北京林業(yè)大學(xué),2011

[872].王月海,許景偉,韓友吉,佀慶柱,姜福成.黃河三角洲5個(gè)耐鹽樹種苗木根系形態(tài)結(jié)構(gòu)特征[J].水土保持研究,2014,21(1):261-266

[873].王月海,許景偉,韓友吉,佀慶柱,姜福成.黃河三角洲五個(gè)耐鹽樹種苗木生物量比較[J].林業(yè)技術(shù)開發(fā),2013,27(4):52-55

[874].吳月燕,崔鵬,李波.薄膜覆蓋對(duì)葡萄生長(zhǎng)和生理特性的影響[J].果樹學(xué)報(bào),2011,28(6):991-997

[875].徐麗紅.小麥殘茬對(duì)連作西瓜生長(zhǎng)及根際土壤微生物的影響[D].哈爾濱:東北農(nóng)業(yè)大學(xué),2014

[876].閆麗娟,楊洪強(qiáng),蘇倩,門秀巾,張瑋瑋.施用炭化蘋果枝粉末對(duì)平邑甜茶生長(zhǎng)及根系構(gòu)型的影響[J].園藝學(xué)報(bào),2014,41(7):1436-1442

[877].閆麗娟.生物炭對(duì)蘋果根系及根區(qū)土壤硝酸鹽代謝的影響[D].泰安:山東農(nóng)業(yè)大學(xué),2014

[878].楊孟拓.基于視頻的隧道火災(zāi)早期預(yù)報(bào)技術(shù)研究[D].西安:長(zhǎng)安大學(xué),2014

[879].楊偉,高疆生,徐崇志,吳翠云,金強(qiáng),紅棗葉面積指數(shù)與產(chǎn)量的相關(guān)性分析[J].新疆農(nóng)業(yè)科學(xué),2012.08.004:1397-1400

[880].楊韻龍,吳建國(guó),周元飛,石春海.一個(gè)新的水稻小穗梗彎曲突變體的形態(tài)特征及基因定位[J].遺傳HEREDITAS(Beijing),2013年2月,35(2):208-214

[881].楊韻龍.水稻穗形突變體的形態(tài)特征和基因定位[D].杭州:浙江大學(xué),2013

[882].姚鵬亮,董新光,郭開政,馬英杰,岳文俊.滴灌條件下干旱區(qū)棗樹根區(qū)的土壤水分動(dòng)態(tài)模擬[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,39(10):149-156

[883].姚鵬亮.干旱區(qū)棗樹小氣候試驗(yàn)和根區(qū)土壤水分模擬研究[D].烏魯木齊:新疆農(nóng)業(yè)大學(xué),2011

[884].姚玉仙.水稻直鏈淀粉合成基因Osgbss Ⅱ的研究[D].福州:福建農(nóng)林大學(xué),2013

[885].余曼麗.小麥籽粒性狀的QTL定位分析[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2014

[886].翟書華,王斌,蘇源,岑曉江,張飛夢(mèng).波葉海菜花不同居群葉面積指數(shù)的變化及分析[J].北方園藝,2014年(9):90-92

[887].占小登.水稻農(nóng)藝性狀QTL分析及抽穗期QTLqHD5的鑒定[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2013

[888].張宏偉,陳玉宇,陳俊宇,朱玉君,黃得潤(rùn),應(yīng)杰政,樊葉楊,莊杰云.微效千粒重QTL qTGW1.1的驗(yàn)證[J].中國(guó)作物學(xué)會(huì)2013年學(xué)術(shù)年會(huì)論文摘要集

[889].張宏偉.水稻千粒重QTL qTGW1.1的驗(yàn)證[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2014

[890].張啟莉.秈稻米蛋白質(zhì)影響米飯蒸煮食味品質(zhì)的研究[D].成都:四川農(nóng)業(yè)大學(xué),2012

[891].張亞蘭.腸桿菌科中產(chǎn)超廣譜β-內(nèi)酰胺酶菌株的基因型分析[D].武漢:湖北中醫(yī)藥大學(xué),2012

[892].鄭萌.乳品企業(yè)產(chǎn)品質(zhì)量控制及發(fā)酵蔬菜乳飲料研發(fā)[D],呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2012

[893].朱雯,丁曉綱,張應(yīng)中,劉喻娟,蔡堅(jiān),李永泉.缺素對(duì)高州油茶幼苗生長(zhǎng)的影響[J].中國(guó)農(nóng)學(xué)通報(bào),2014,30(25):61-65

[894].Gaoneng Shao,Xiangjin Wei,Mingliang Chen,Shaoqing Tang,Ju Luo,Guiai Jiao,Lihong Xie,Peisong Hu.Allelic variation for a candidate gene for GS7, responsible for grain shape in rice[J].Theoretical and Applied Genetics,2012,125(6):1303-1312

[895].Tang Shao-qing,Shao Gao-neng,Wei Xiang-jin,Chen Ming-liang,Sheng Zhong-hua,Luo Ju,Jiao Gui-ai,Xie Li-hong,Hu Pei-song.QTL mapping of grain weight in rice and the validation of the QTL qTGW3.2[J].Gene,2013,527(1):20-206

[896].Fengxia Wu,Li Lin,Jian-Wen Qiu,Hao Chen,Shaoping Weng,Tiangang Luan.Complex effects of two presumably antagonistic endocrine disrupting compounds on the goldfish Carassius aumtus: A comprehensive study with multiple toxicological endpoints[J].Aquatic Toxicology,2014,155:43-51

[897].Lihong Xie,Shaoqing Tang,Neng Chen,Ju Luo,Guiai Jiao,Gaoneng Shao,Xiangjin Wei,Peisong Hu.Rice Grain Morphological Characteristics Correlate with Grain Weight and Milling Quality[J].Cereal Chemistry,2013,90(6):587-593

[898].Qihua Liu,Xiu Wu,Jiaqing Ma,Caiyun Xin.Effects of Cultivars, Transplanting Patterns, Environment and Their Interactions on Grain Quality of Japonica Rice[J].Cereal Chemistry,2015

[899].ZHANG Hong-wei,CHEN Yu-yu,CHEN Jun-yu,ZHU Yu-jun,HUANG De-run,FAN Ye-yang,ZHUANG Jie-yun.Mapping of qTGW1.1, a Quantitative Trait Locus for 1000-Grain Weight in Rice (Oryza sativa L.)[J].Rice Science,2015,22(1):9-15

[900].Zhenyuan Shi, Yuchun Rao, Jie Xu, et al.Characterization and cloning of SMALL GRAIN 4, a novel DWARF11 allele that affects brassinosteroid biosynthesis in rice[J].Science Bulletin,2015

[901].李雪倩,徐冉,段朋根,伍應(yīng)保,羅越華,李云海.水稻窄葉突變體zy17的遺傳分析和候選基因鑒定[J].遺傳,2015

[902].李加好,劉帥飛,李志軍.胡楊枝、葉和花芽形態(tài)數(shù)量變化與個(gè)體發(fā)育階段的關(guān)系[J],生態(tài)學(xué)雜志,201534(4):941-946

[903].XINGANG ZHOU,FENGZHI WU.CHANGES IN SOIL CHEMICAL CHARACTERS AND ENZYME ACTIVITIES DURING CONTINUOUS MONOCROPPING OF CUCUMBER (CUCUMIS SATIVUS)[J].Pak. J. Bot., 47(2): 691-697, 2015.

[904].Changbin Yin,Huihui Li,Shanshan Li,Lidong Xu,Zhigang Zhao,Jiankang Wang.Genetic dissection on rice grain shape by the two-dimensional image analysis in one japonica×indica population consisting of recombinant inbred lines[J].Theoretical and Applied Genetics(2015年IF:3.790),DOI 10.1007/s00122-015-2560-7

[905].Fang Changyun, Hu Xianqiao, Sun Chengxiao, et al. Simultaneous Determination of Multi Rice Quality Parameters Using Image Analysis Method[J].Food Analytical Methods (2014)8:70-78

[906].Wu, Yueyan; Fu, Tao; Liu, Rong; Rao, Huiyun. Physiological and Biochemical Responses of Grape Yinhong Seedlings to Short-term Weak-light Stress[J].Agricultural Science & Technology16.2 (Feb 2015): 200-204,223.

[907].韓亞楠.Co-γ輻射對(duì)鹽脅迫下烏拉爾甘草耐鹽性的影響[D].石河子:石河子大學(xué),2015

[908].楊麗聰.7種玄參科植物種子萌發(fā)期抗逆性評(píng)價(jià)研究[D].阿拉爾:塔里木大學(xué),2015

[909].Liu Mingfeng,Hu Xianpeng,Liao Yitao,Liao Qingxi,Wan Xingyu,Ji Muye.Morphological parameters characteristics of mechanically transplanted plant in suitable transplanting period for different rape varieties[J].Transactions of the Chinese Society of Agricultural Engineering,2015 Supplement,Vol.31,p79-88.10p

[910].李加好,劉帥飛,李志軍.胡楊枝、葉和花芽形態(tài)數(shù)量變化與個(gè)體發(fā)育階段的關(guān)系[J].生態(tài)學(xué)雜志Chinese Journal of Ecology 2015,34(4):941-946

[911].朱春群,侯啟瑞,何恩潔,徐杰,陳濤.SC-C型蠶卵數(shù)自動(dòng)檢測(cè)系統(tǒng)應(yīng)用效果比較[J].中國(guó)蠶業(yè),2015,36( 3): 28-31

[912].宋礽蘇,藍(lán)景針,夏世峰,華嬌.ZPXG-18型轉(zhuǎn)盤斜刮式自動(dòng)光電數(shù)粒儀和千粒重儀的設(shè)計(jì)[J].浙江農(nóng)業(yè)學(xué)報(bào) Acta Agriculturae Zhejiangensis,2011,23(5):1023-1028

[913].潘圣剛,聞祥成,田華,陳益培,莫釗文,段美洋,唐湘如.播種密度和壯秧劑對(duì)水稻秧苗生理特性的影響[J].華南農(nóng)業(yè)大學(xué)學(xué)報(bào) 2015,36(3):32-36

[914].俞超,章澤煥,汪財(cái)生,馬世迎,金從標(biāo).不同斷根方式對(duì)“鄞紅”葡萄生長(zhǎng)及品質(zhì)的影響[J].中國(guó)南方果樹,2015,44(3):117-119

[915].王靜,章林平,王利鵑,朱亦君,邵國(guó)勝,崔翠.不同磷素水平對(duì)水稻根系生長(zhǎng)及部分營(yíng)養(yǎng)元素吸收的影響[J].西南大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,37(7):30-36

[916].李恒,冉茂林,張其圣,李曉梅,王國(guó)芳,王志強(qiáng),張偉,吳奇謙,陳功.不同蘿卜品種鹽漬的適宜性評(píng)價(jià)[J].食品與發(fā)酵科學(xué),2015,51(2):39-45

[917].柯用春,曹明,楊小鋒,任紅,黃植,王育瑞,陳廣旺,林福,許江偉.不同濃度有機(jī)水溶肥對(duì)熱帶設(shè)施甜瓜產(chǎn)量和品質(zhì)的影響[J].新疆農(nóng)業(yè)科學(xué) 2015,52(2):217-221

[918].高疆生,唐都,徐崇志,李湘鈺,王艷,馮一峰.不同施肥方案對(duì)幼齡棗樹營(yíng)養(yǎng)生長(zhǎng)特性及產(chǎn)量的影響[J].新疆農(nóng)業(yè)科學(xué),2015,52(4):637-642

[919].王燕,晏紫依,蘇艷,何茜,李吉躍,王軍輝,王力朋.不同施肥方法對(duì)歐洲云杉生長(zhǎng)生理和根系形態(tài)的影響[J].西北林學(xué)院學(xué)報(bào)2015,30(6):15-21

[920].?,摤?廖康,趙世榮,賈楊,彭曉莉,龐洪翔,江振斌.不同栽植密度庫(kù)爾勒香梨樹冠結(jié)構(gòu)及產(chǎn)量品質(zhì)差異分析[J].新疆農(nóng)業(yè)科學(xué) 2015,52(8):1425-1431

[921].魏彪,鄒威,劉影,金虎,王慶斌,陶雙勇.不同種源和家系山丁子幼苗葉片生長(zhǎng)及苗高差異性分析[J].安徽農(nóng)業(yè)科學(xué),Journal of Anhui Agri.Sci.2015,43(25):148-150

[922].朱晉宇,惠 放,李苗,馬韞韜,余宏軍,蔣衛(wèi)杰.氮水平對(duì)盆栽沙培番茄苗期根系三維構(gòu)型與氮素利用的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(23):131-137

[923].蘇艷,何茜,晏紫依,李吉躍,王軍輝.氮素供應(yīng)對(duì)歐洲云杉根系生長(zhǎng)發(fā)育效應(yīng)分析[J].中國(guó)農(nóng)學(xué)通報(bào) 2015,31(16):1-5

[924].李晶,張麗芳,焦 健,李改玲,顧萬榮.低溫脅迫下外源ABA對(duì)玉米幼苗生長(zhǎng)影響[J].東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,46(11):1-7

[925].耿翠敏.丁草胺、毒死蜱對(duì)浮游生物的生態(tài)風(fēng)險(xiǎn)研究[D].杭州:浙江大學(xué),2015

[926].王傲雪,張莉莉,王旭,曲薇,康立功,陳秀玲.粉紅粘帚菌對(duì)番茄促生作用及施用方式研究[J].東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,46(10):37-44

[927].李娜.甘藍(lán)型油菜粒重母體調(diào)控機(jī)理解析[D].中國(guó)農(nóng)業(yè)科學(xué)院,2015

[928].陳雪.干旱脅迫對(duì)不同大麥生長(zhǎng)發(fā)育、產(chǎn)量和品質(zhì)的影響[D].杭州:浙江大學(xué),2015

[929].俞超,馬世迎,汪財(cái)生,章澤煥,金從標(biāo).根域限制對(duì)“鄞紅”葡萄長(zhǎng)勢(shì)及品質(zhì)的影響[J].現(xiàn)代園藝,2015,7:13-14

[930].李加好.胡楊階段轉(zhuǎn)變過程枝、葉和花芽形態(tài)數(shù)量變化及生理特征研究[D].阿拉爾:塔里木大學(xué),2015

[931].李加好,馮梅,李志軍.胡楊葉片碳水化合物及可溶性蛋白特征與葉形變化和個(gè)體發(fā)育階段的關(guān)系[J].植物研究,2015,35(4):521-527

[932].賴蘇雯.基于土壤氮磷比的生境資源梯度水平和次序?qū)Y(jié)縷草克隆生長(zhǎng)的影響[D].上海:華東師范大學(xué),2015

[933].湯秋香,林濤,蘇秀娟,董文杰,石書兵.極端干旱區(qū)滴灌量對(duì)冬小麥水氮利用及根系分布的影響[J].麥類作物學(xué)報(bào),2015,35(10):1412-1418

[934].潘磊,李依,余曉露,郭瑞,陳禪友.豇豆產(chǎn)量性狀與SSR分子標(biāo)記的關(guān)聯(lián)分析[J].湖北農(nóng)業(yè)科學(xué),2015,54(16):3953-3958

[935].李麗,陳林,張婷婷,銀永安,朱江艷,趙雙玲.膜下滴灌對(duì)水稻根系形態(tài)及生理性狀的影響[J].排灌機(jī)械工程學(xué)報(bào),2015,33(6):536-540

[936].馮芳玖,李靜婷,郭丹鳳,王海,錢英,莫億偉.年份氣溫差異對(duì)野生型和轉(zhuǎn)OsPIN1a基因水稻胚乳發(fā)育及種子萌發(fā)的影響[J].核農(nóng)學(xué)報(bào),2015,29(11):2198-2207

[937].張海波.碾磨度對(duì)稻米蒸煮品質(zhì)和營(yíng)養(yǎng)品質(zhì)的影響[D].杭州:浙江大學(xué),2015

[938].柯用春,曹明,楊小鋒,黃植,宋利強(qiáng),劉瑩.噴施不同濃度有機(jī)硅肥對(duì)熱帶地區(qū)甜瓜產(chǎn)量和品質(zhì)的影響[J].南方農(nóng)業(yè)學(xué)報(bào) Journal of Southern Agriculture 2015,46(1):53-57

[939].吳曉麗,湯永祿,李朝蘇,吳春,黃鋼.秋季玉米秸稈覆蓋對(duì)丘陵旱地小麥生理特性及水分利用效率的影響[J].作物學(xué)報(bào),2015,41(6):929-937

[940].王琳琳.水稻第1染色體qTGW1_2區(qū)域3個(gè)QTL的分解和驗(yàn)證[D].中國(guó)農(nóng)業(yè)科學(xué)院,2015

[941].王琳琳,陳玉宇,郭梁,張宏偉,樊葉楊,莊杰云.水稻第1染色體qTGW1.2區(qū)域粒重組分性狀QTL的剖析[J].中國(guó)水稻科學(xué),2015,29(3):232-240

[942].高方遠(yuǎn),羅正良,任鄄勝,吳賢婷,陸賢軍,蘇相文,呂建群,任光俊.水稻粒厚主效位點(diǎn)qGT8 精細(xì)定位和候選基因分析[J].中國(guó)農(nóng)業(yè)科學(xué),2015,48(24):4859-4871

[943].石珍源.水稻粒型QTLqGW12的精細(xì)定位和粒長(zhǎng)調(diào)控基因SG4的克隆與功能驗(yàn)證[D].中國(guó)農(nóng)業(yè)科學(xué)院,2015

[944].Zhenyuan Shi,Yuchun Rao,Jie Xu,Shikai Hu,Yunxia Fang,et.al.Characterization and cloning of SMALL GRAIN 4, a novel DWARF11 allele that affects brassinosteroid biosynthesis in rice[J].Sci. Bull. (2015) 60(10):905–915

[945].丁華,王婧,趙明明,嚴(yán)偉,周有祥,楊潔.圖像法在稻米外觀品質(zhì)測(cè)定中的應(yīng)用研究[J].湖北農(nóng)業(yè)科學(xué),2015,54(23):6012-6014

[946].張冬冬.小麥TaGASR7部分同源基因表達(dá)調(diào)控及其功能初步研究[D].中國(guó)農(nóng)業(yè)科學(xué)院,2015

[947].許秀玉,肖莉,王明懷,張華新.沿??古_(tái)風(fēng)樹種評(píng)價(jià)體系構(gòu)建與選擇[J].浙江農(nóng)林大學(xué)學(xué)報(bào),2015,32(4):516-522

[948].李學(xué)孚,倪智敏,吳月燕,李美芹,劉蓉,饒慧云.鹽脅迫對(duì)‘鄞紅’葡萄光合特性及葉片細(xì)胞結(jié)構(gòu)的影響[J]. 生態(tài)學(xué)報(bào),2015,35(13):4436-4444

[949].王志剛,胡云龍,徐偉慧,胡影,劉帥,張穎,王春龍.一株溶磷菌的分離鑒定及對(duì)西瓜根系的促生效應(yīng)[J].浙江農(nóng)業(yè)學(xué)報(bào),2015,27(5):798-803

[950].何茜,蘇艷,晏紫伊,李吉躍,王軍輝,王力朋.增施氮肥對(duì)歐洲云杉光合生理特性的影響[J].生態(tài)科學(xué),2015,34(3):109-115

[951].錢萍仙,李學(xué)孚,吳月燕,饒慧云,劉蓉,李美芹,付濤.江蘇農(nóng)業(yè)學(xué)報(bào),2015,31(3):667-672

[952].郭海宇.植物根系圖像的特征分析方法研究與實(shí)現(xiàn)[D].成都:電子科技大學(xué),2013

[953].孫陽.高產(chǎn)優(yōu)質(zhì)粳稻品種引種湖北的農(nóng)藝性狀評(píng)估[D].武漢:華中農(nóng)業(yè)大學(xué),2014

[954].王自奎.小麥、玉米間作復(fù)合群體光能和水分傳輸利用試驗(yàn)與模擬研究[D].西安:西北農(nóng)林科技大學(xué),2015

[955].Ming-Jian, HuHai-Ping, ZhangJia-Jia Cao, et al. Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.)[J].Molecular Breeding(2016) 36: 25. doi:10.1007/s11032-016-0449-z

[956].Changquan Zhang, Lihui Zhou, Zhengbin Zhu, et al. Characterization of Grain Quality and Starch Fine Structure of Two Japonica Rice (Oryza Sativa) Cultivars with Good Sensory Properties at Different Temperatures during the Filling Stage[J].J. Agric. Food Chem., 2016, 64 (20), pp 4048–4057

[957].Peng Wang, Shao-Hui Wu, Ming-Xia Wen, Yin Wang, Qiang-Sheng Wu. Effects of combined inoculation with Rhizophagus intraradices and Paenibacillus mucilaginosus on plant growth, root morphology, and physiological status of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings under different levels of phosphorus[J].Scientia Horticulturae Volume 205, 23 June 2016, Pages 97–105

[958].Hong-Wei Zhang, Ye-Yang Fan, Yu-Jun Zhu, et al. Dissection of the qTGW1.1 region into two tightly-linked minor QTLs having stable effects for grain weight in rice[J]. BMC Genetics 2016, 17(1):1-10 DOI 10.1186/s12863-016-0410-5

[959].Guanfu Fu, Baohua Feng, Caixia Zhang, et al. Heat Stress Is More Damaging to Superior Spikelets than Inferiors of Rice (Oryza sativa L.) due to Their Different Organ Temperatures[J]. Front Plant Sci. 2016; 7: 1637.doi:10.3389/fpls.2016.01637

[960].Chao Wu, Kehui Cui, Wencheng Wang, et al. Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice[J]. Sci Rep. 2016; 6: 34978. doi:10.1038/srep34978

[961].Wu T, Zhang P, Zhang L, Wang GG, Yu M (2016) Morphological Response of Eight Quercus Species to Simulated Wind Load. PLoS ONE 11(9): e0163613. doi:10.1371/journal.pone.0163613

[962].Bai L, Deng H, Zhang X, Yu X, Li Y (2016) Gibberellin Is Involved in Inhibition of Cucumber Growth and Nitrogen Uptake at Suboptimal Root-Zone Temperatures. PLoS ONE 11(5): e0156188. doi:10.1371/journal.pone.0156188

[963].Yingheng, WangYanmei, ZhengQiuhua Cai, et al. Population structure and association analysis of yield and grain quality traits in hybrid rice primal parental lines[J]. Euphytica (2016) 212: 261. doi:10.1007/s10681-016-1766-3

[964].Yupeng WANG, Hongfei OUYANG, Zhiquan WANG, Weiping JIANG, Xinhong PENG, Ruicai HAN, Xueming TAN, Qinghua SHI, Xiaohua PAN, Ziming WU.Analysis on Phenotypic, Physiological and Genetic Characteristics of Large Grain Rice Line lg1.Agricultural Science & Technology, 2016, 17(10): 2247-2252, 2348

[965].許建蘭,馬瑞娟,俞明亮,張斌斌,周懋,郭磊.不同斷根方式對(duì)桃胚培苗移栽的影響[J].江西農(nóng)業(yè)學(xué)報(bào) 2016,28(9):23~26

[966].韋如萍,胡德活,晏 姝,鄭會(huì)全,王潤(rùn)輝.不同供磷濃度對(duì)杉木苗根系和盆栽土壤的影響[J].華南農(nóng)業(yè)大學(xué)學(xué)報(bào) 2016,37(6):77-83

[967].湯丹,龔榜初,江錫兵,吳開云,徐陽.不同甜柿砧穗組合根系差異性研究[J].林業(yè)科學(xué)研究 2016,29(1):85-92

[968].于洪杰,陳少燦,周新剛,吳鳳芝.不同土層深度及磷水平對(duì)番茄生物量及根系形態(tài)的影響[J].中國(guó)蔬菜 CHINA VEGETABLES 2016(4):42-47

[969].楊生華,劉榮,楊濤,張紅巖,杜萌瑩,宗緒曉.蠶豆種質(zhì)資源種子表型性狀精準(zhǔn)評(píng)價(jià)[J].中國(guó)蔬菜 CHINA VEGETABLES 2016(10):32-40

[970].蔣艾平,姜景民,劉軍.檫木葉片性狀沿海拔梯度的響應(yīng)特征[J].生態(tài)學(xué)雜志 Chinese Journal of Ecology 2016,35(6):1467-1474

[971].白龍強(qiáng),劉玉梅,苗麗,張小翠,李衍素,賀超興,于賢昌.赤霉素對(duì)黃瓜幼苗在根區(qū)亞低溫下生長(zhǎng)與氮積累的影響[J].園藝學(xué)報(bào),2016,43 (7):1383–1390.

[972].汪欲鵬,王根發(fā),武志峰,王智權(quán),石慶華,潘曉華,吳自明.大粒型水稻材料粒型性狀的QTL定位[J]. 核農(nóng)學(xué)報(bào) 2016,30(12):2295 ~ 2303

[973].張新忠,李英哲,郭寶健,苗凌峰,呂超,許如根.二棱大麥與六棱大麥籽粒性狀的差異性及其相關(guān)性[J]. 麥類作物學(xué)報(bào) 2016,36(11):1474-1481

[974].寧留芳,楊洪強(qiáng),曹輝,周春然,張瑋瑋,孟凡堯.發(fā)酵果樹枝碎屑對(duì)蘋果幼樹根系特征及葉片光合蒸騰的影響[J]. 園藝學(xué)報(bào),2016,43 (10):1989–1994.

[975].王明華,李明,高祺,甄善繼,李喬,高紅秀,金萍.改良劑對(duì)蘇打鹽堿土玉米幼苗生長(zhǎng)和生理特性的影響[J]. 生態(tài)學(xué)雜志 Chinese Journal of Ecology 2016,35(11):2966 - 2973

[976].陳亮.干旱脅迫對(duì)水稻葉片光合作用和產(chǎn)量及稻米品質(zhì)的影響研究[D].武漢:華中農(nóng)業(yè)大學(xué),2015

[977].陸炳,鄧光兵,張海莉,李俊,萬洪深,潘志芬,楊武云,余懋群,龍海.高產(chǎn)小麥品種川麥42產(chǎn)量性狀QTL分析[J].應(yīng)用與環(huán)境生物學(xué)報(bào), 2017(01):1-12

[978].李堃,余海英,黃富,陳光登,張路.鎘低積累水稻親本及其雜交組合鎘積累特征分析[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(8):1444-1450

[979].姜順邦,韋小麗.供水量對(duì)花櫚木苗期耗水、生長(zhǎng)和生理的影響及灌溉制度優(yōu)化[J].林業(yè)科學(xué),2016,52(10):22-30

[980].陳峰,李景嶺,袁守江,姜明松,徐建第,周學(xué)標(biāo),楊連群,朱文銀.韓國(guó)引進(jìn)水稻品種的鑒定與利用評(píng)價(jià)[J].山東農(nóng)業(yè)科學(xué),2016,48(11) : 26 ~ 28

[981].趙鵬宇.胡楊、灰楊異形葉形態(tài)解剖特征與個(gè)體發(fā)育階段的關(guān)系[D].阿拉爾:塔里木大學(xué),2016

[982].劉帥飛.灰葉胡楊不同徑級(jí)枝、葉和花芽形態(tài)學(xué)及生理生化特性研究[D].阿拉爾:塔里木大學(xué),2016

[983].龔朝勇.基于機(jī)器視覺裂穎稻種在線雙面識(shí)別與剔除系統(tǒng)研究[D].杭州:浙江大學(xué),2015

[984].陳利娜,裘珍飛,丁曉綱,張方秋,李吉躍,何 茜,楊海燕.鉀對(duì)黑木相思苗木生長(zhǎng)、根系形態(tài)的影響[J].中國(guó)農(nóng)學(xué)通報(bào) 2016,32(22):5-9

[985].李揚(yáng),徐小艷,嚴(yán)明,馮芳君,馬孝松,梅捍衛(wèi).利用GS3基因功能性分子標(biāo)記改良水稻粒型的研究[J].上海農(nóng)業(yè)學(xué)報(bào)2016,32(1):1-5

[986].員小濤.兩種養(yǎng)分水平條件下分株生根比例及排布方式對(duì)結(jié)縷草克隆生長(zhǎng)的影響[D].上海:華東師范大學(xué),2016

[987].戴海英,毛偉英,高慧慧,練華窯.輪葉蒲桃優(yōu)良單株葉片形態(tài)特征分析[J].南方林業(yè)科學(xué),2016,44(1):20-23

[988].洪宜聰.杉木閩粵栲混交林分特征與水土保持功能研究[J].江蘇林業(yè)科技,2016,43(5):18-24

[989].鄭家,裘珍飛,丁曉綱,張方秋,李吉躍,楊海燕,張祥宇.施磷量對(duì)黑木相思苗木生長(zhǎng)的影響[J].中國(guó)農(nóng)學(xué)通報(bào) 2016,32(19):1-6

[990].WANG Zhen,CHEN Jun-yu,ZHU Yu-jun,FAN Ye-yang,ZHUANG Jie-yun.Validation of qGS10, a quantitative trait locus for grain size on the long arm of chromosome 10 in rice (Oryza sativa L.)[J].Journal of Integrative Agriculture 2016, 15(0): 60345-7

[991].劉志奇.作物生長(zhǎng)可控環(huán)境優(yōu)化控制方法的研究[D].天津:天津職業(yè)技術(shù)師范大學(xué),2016

[992].羅春旺,于健,劉琪璟,徐倩倩,張國(guó)春.應(yīng)用照片測(cè)量技術(shù)提取和自動(dòng)校正年輪寬度[J].生態(tài)學(xué)雜志 Chinese Journal of Ecology 2016,35(10) : 2845-2851

[993].羅春旺.濕地松生物量分配及細(xì)根的養(yǎng)分供應(yīng)能力研究[D].北京:北京林業(yè)大學(xué),2016

[994].汪欲鵬,歐陽鴻飛,王智權(quán),江衛(wèi)平,彭新紅,韓瑞才,譚雪明,石慶華,潘曉華,吳自明.水稻大粒型材料lg1的生理特性與遺傳分析[J].江西農(nóng)業(yè)大學(xué)學(xué)報(bào) 2016,38(2) : 223-231

[995].蔣悅,孫娟,韓思迪,范磊,許凱文,江玲.水稻黃葉突變體yl的遺傳分析與基因定位[J].南京農(nóng)業(yè)大學(xué)學(xué)報(bào) 2016,39(6):889-897

[996].王亞梁,張玉屏,朱德峰,向鏡,武輝,陳惠哲,張義凱.水稻穗分化期高溫脅迫對(duì)穎花退化及籽粒充實(shí)的影響[J].作物學(xué)報(bào) 2016, 42(9): 1402-1410

[997].立紅,孫影影,李星星,阿曼古麗·買買提阿力,拉扎提·努爾布拉提,張巨松.水楊酸浸種對(duì)NaCl脅迫下棉花種子萌發(fā)和幼苗根系生長(zhǎng)的影響[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào) 2016,21(4):10-17

[998].孫亞強(qiáng),吳翠云,王德,王志強(qiáng).酸棗花器官結(jié)構(gòu)、花粉形態(tài)及生活力比較研究[J].中國(guó)農(nóng)學(xué)通報(bào) 2016,32(4):87-91

[999].劉昌乾,彭海峰,邱振國(guó),何玉瓊,李文安,唐培洵,李少澤,陳雄輝.秈型雜交水稻新不育系和新恢復(fù)系的品質(zhì)配合力分析[J].華南農(nóng)業(yè)大學(xué)學(xué)報(bào) 2016,37(2) : 30-35

[1000].孫云云,古佳玉,趙林姝,郭會(huì)君,謝永盾,趙世榮,趙紫偉,宋希云,劉錄祥.小麥微核心種質(zhì)γ射線輻射敏感性分析[J].植物遺傳資源學(xué)報(bào) 2016,17(2) : 189-196

[1001].劉玉梅,白龍強(qiáng),慕英,李衍素.新型白色遮陽網(wǎng)對(duì)番茄育苗環(huán)境及幼苗生長(zhǎng)的影響[J].中國(guó)蔬菜 2016(10):44-51

[1002].張小翠,劉玉梅,白龍強(qiáng),賀超興,于賢昌,李衍素.亞適宜溫光環(huán)境下不同硝銨比營(yíng)養(yǎng)液對(duì)黃瓜幼苗生長(zhǎng)、氮吸收和代謝的影響[J].應(yīng)用生態(tài)學(xué)報(bào) 2016,27(8) : 2527-2534

[1003].潘威,馬文廣,鄭昀曄,耿世兵.應(yīng)用種皮葉綠素?zé)晒庵甘緹煵莘N子成熟度的研究[J].西南農(nóng)業(yè)學(xué)報(bào) 2016,29(4):966-969

[1004].朱雯,徐佳琦,許逸林,戚嘉敏,奚如春.油茶輕基質(zhì)育苗效果[J].經(jīng)濟(jì)林研究 2016,34(3):158-162

[1005].屈佳偉,高聚林,志剛,于曉芳,胡樹平,孫繼穎.玉米根系特征的基因型差異及與氮吸收效率的關(guān)系[J].玉米科學(xué) 2016,24(2):72-78

[1006].屈佳偉.玉米冠層-根系-土壤系統(tǒng)氮素吸收與轉(zhuǎn)運(yùn)的品種差異及生理機(jī)制[D].內(nèi)蒙古農(nóng)業(yè)大學(xué),2016

[1007].王德.棗新品系鑒定及其經(jīng)濟(jì)生物學(xué)性狀研究.阿拉爾:塔里木大學(xué),2016

[1008].張艷婷,張建軍,王建修,吳曉洪,陳寶強(qiáng),李鵬飛,王志臻.長(zhǎng)期水淹對(duì)‘中山杉118’幼苗呼吸代謝的影響[J].植物生態(tài)學(xué)報(bào) 2016, 40 (6): 585–593

[1009].張艷婷.中山杉耐淹機(jī)理研究[D].北京:北京林業(yè)大學(xué),2016

[1010].張江林,張賡,魯劍巍,侯文峰,任濤,叢日環(huán),李小坤.資源型功能磷復(fù)肥對(duì)水稻產(chǎn)量、養(yǎng)分吸收及抗折力的影響[J].磷肥與復(fù)肥 2016,31(2):43-46

[1011].穆麟,王航,趙紅凱,孫鰲,曾寧波,張志飛.紫花苜蓿在湖南酸性紅壤地區(qū)的生長(zhǎng)適應(yīng)性研究 [J].湖南農(nóng)業(yè)科學(xué) 2016,(5):16-18,21

[1012].韓保林,張洪凱,劉志堅(jiān),廖泳祥,杜康兮,彭永彬,張紅宇,徐培洲,陳曉瓊,吳先軍.水稻粒形及千粒重QTL定位與上位性分析[J].雜交水稻 2016,(6):46-51,58

[1013].Hu M-J, Zhang H-P, Liu K, Cao J-J,Wang S-X, Jiang H, Wu Z-Y, Lu J, Zhu XF, Xia X-C, Sun G-L, Ma C-X and Chang C (2016) Cloning and Characterization of TaTGW-7A Gene Associated with Grain Weight in Wheat via SLAF-seq-BSA. Front. Plant Sci. 7:1902. doi: 10.3389/fpls.2016.01902

[1014].徐靜.水稻葉寬基因qFLW7和OsNAAL1的圖位克隆及其分子調(diào)控機(jī)制[D].沈陽:沈陽農(nóng)業(yè)大學(xué),2017

[1015].Zhenyuan Shi,Yuchun Rao,Jie Xu,Shikai Hu. et al.Characterization and cloning of SMALL GRAIN 4, a novel DWARF11 allele that affects brassinosteroid biosynthesis in rice.Sci. Bull. (2015) 60(10):905–915

[1016].張喆.以尼瓦拉野生稻為供體的單片段代換系的構(gòu)建及QTLs鑒定[D].廣州:華南農(nóng)業(yè)大學(xué),2016

[1017].郭云平.NaCl脅迫對(duì)西瓜幼苗的影響及腐植酸的緩解效應(yīng)[D].泰安:山東農(nóng)業(yè)大學(xué),2016

[1018].高晶晶.中草藥提取物類抗菌包裝材料的制備與應(yīng)用[D].天津:天津科技大學(xué),2016

[1019].張瑞雪.稻草苫等覆蓋對(duì)蘋果土壤硝酸鹽代謝及根系與葉片光合蒸騰的影響.泰安:山東農(nóng)業(yè)大學(xué),2016

[1020].高雙.凍融作用下根系對(duì)解凍期土壤抗沖性的影響[D].沈陽:沈陽農(nóng)業(yè)大學(xué),2016

[1021].唐廣.水稻恢復(fù)系的優(yōu)質(zhì)_抗病蟲基因的聚合育種[D].廣州:華南農(nóng)業(yè)大學(xué),2016

[1022].孫曉慧.植物生長(zhǎng)調(diào)節(jié)劑DA_6與控釋氮肥配施對(duì)菠菜生長(zhǎng)及土壤肥力的影響[D].泰安:山東農(nóng)業(yè)大學(xué),2016

[1023].楊梟.農(nóng)大333_農(nóng)大335玉米DH群體構(gòu)建與百粒重QTL定位[D].泰安:山東農(nóng)業(yè)大學(xué),2016

[1024].馬雪麗.不同區(qū)域生產(chǎn)的小麥種子活力差異及生理基礎(chǔ)研究[D].泰安:山東農(nóng)業(yè)大學(xué),2016

[1025].徐偉娜.小麥穗發(fā)育相關(guān)基因TaSPL20的生物學(xué)功能分析[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2016

[1026].王明華.改良劑對(duì)蘇打鹽堿土及玉米生理特性的影響[D].哈爾濱:東北農(nóng)業(yè)大學(xué),2016

[1027].胡明建.小麥粒重相關(guān)基因TaTGW6、TaTGW-7A克隆及其功能標(biāo)記開發(fā)[D].合肥:安徽農(nóng)業(yè)大學(xué),2016

[1028].劉聰.基于農(nóng)業(yè)有機(jī)物料生態(tài)利用的蔬菜育苗基質(zhì)配方研究[D].哈爾濱:東北農(nóng)業(yè)大學(xué),2016

[1029].高烽焱.控制水稻粒型基因GLW2的功能驗(yàn)證及調(diào)控機(jī)理[D].成都:四川農(nóng)業(yè)大學(xué),2016

[1030].劉文秀.生物炭基肥料對(duì)玉米和菠菜生長(zhǎng)的影響研究[D].泰安:山東農(nóng)業(yè)大學(xué),2016

[1031].朱海軍.薄殼山核桃容器苗培育關(guān)鍵技術(shù)研究[D].南京:南京林業(yè)大學(xué),2016

[1032].李偉,楊雨玲,董麗麗,黃松,王金幣,劉家凱,方杰,陸術(shù)偉,高心明,韓興.短期酸化對(duì)新安江流域屯溪段水體浮游植物群落結(jié)構(gòu)及多樣性的影響[J].生態(tài)獨(dú)毒理學(xué)報(bào).2016年第11卷第6期,313-322

[1033].王禎.水稻第10染色體長(zhǎng)臂上QTLqGS10的驗(yàn)證[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2016

[1034].張小翠.亞適宜溫光環(huán)境下營(yíng)養(yǎng)液NO3-N/Nh4-N對(duì)黃瓜幼苗生長(zhǎng)、氮吸收與代謝的影響[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2016

[1035].譚全亞.基于SSSL水稻柱頭外露率QTL的鑒定和聚合效應(yīng)分析[D].廣州:華南農(nóng)業(yè)大學(xué),2016

[1036].阿麗騰˙吐爾孫哈力.南疆主要果樹葉片抗污能力分析[D].烏魯木齊:新疆農(nóng)業(yè)大學(xué),2016

[1037].鄧惠惠.亞適宜溫光下GA_3對(duì)黃瓜生長(zhǎng)和生理特性的影響[D].泰安:山東農(nóng)業(yè)大學(xué),2016

[1038].張肖.胡楊異形葉表達(dá)譜分析[D].阿拉爾:塔里木大學(xué),2016

[1039].張巧妹.基于GWAS定位的番茄灰霉菌抗性_省略_關(guān)基因GW9和GW13的功能鑒定[D].武漢:華中科技大學(xué),2016

[1040].邱權(quán).楸樹無性系苗期水肥光互作效應(yīng)研究[D].廣州:華南農(nóng)業(yè)大學(xué),2016

[1041].項(xiàng)超.利用導(dǎo)入系剖析水稻產(chǎn)量性狀配合力和雜種優(yōu)勢(shì)及一般配合力QTL精細(xì)定位[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2016

[1042].劉思.擬南芥和甘藍(lán)型油菜油體蛋白功能分析[D].武漢:華中科技大學(xué),2016

[1043].白龍強(qiáng).赤霉素調(diào)控根區(qū)亞低溫下黃瓜幼苗氮吸收和代謝的分子生理機(jī)制[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2016

[1044].尹永泰.甘藍(lán)型油菜溶血磷脂?;D(zhuǎn)移酶家族基因的克隆與表達(dá)[D].武漢:華中科技大學(xué),2016

[1045].樊世軍.一份水稻短粒突變體08sg2的表型分析、基因鑒定與功能驗(yàn)證[D].成都:四川農(nóng)業(yè)大學(xué),2016

[1046].韓平安.高丹草雜種優(yōu)勢(shì)的比較蛋白質(zhì)組學(xué)研究[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2016

[1047].朱曉峰.普通小麥千粒重相關(guān)基因TaPTF1和Tabas1的克隆與表達(dá)分析[D].合肥:安徽農(nóng)業(yè)大學(xué),2016

[1048].王亞梁.高溫對(duì)水稻穗發(fā)育及穗部性狀的影響[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2016

[1049].方建波,竇寧,張亨,鄭詩(shī)雅,陳紅躍.3種植物生長(zhǎng)調(diào)節(jié)劑對(duì)火力楠根系形態(tài)建成的影響[J].林業(yè)與環(huán)境科學(xué),2017年10月第33卷第5期

[1050].楊修一,李圣會(huì),梅宇超,楊廣,孫曉慧,趙晨浩,張民,李成亮.DA-6對(duì)水培生菜生長(zhǎng)及生理特性的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(1):32-38

[1051].韋辰,王士雷,孔憲剛,藏圓圓,李瑜.補(bǔ)陽還五湯對(duì)腦缺血再灌注損傷大鼠線粒體分裂蛋白Drpl、Fisl及細(xì)胞色素C表達(dá)的影響[J].陜西中醫(yī),2017年10月第38卷第10期

[1052].孫曉慧,李成亮,陳劍秋,劉龍飛,王秋雙,楊帆.不同胺鮮酯(DA-6)濃度及施用方式對(duì)菠菜生長(zhǎng)的影響[J].北方園藝,2017(13):122-128

[1053].李星星,嚴(yán)青青,王立紅,魏鑫,張巨松.不同棉花品種生長(zhǎng)特性分析及耐寒性鑒定[J].南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,40(4):584-591

[1054].薩吉旦·阿卜杜克日木,巴特爾·巴克,艾克來木·艾合買提,祖力克艷·麻那甫,王孟輝,羅那那.不同沙塵和遮陰處理梯度對(duì)4種果樹葉片有機(jī)滲透調(diào)節(jié)物質(zhì)的影響[J].新疆農(nóng)業(yè)科學(xué),2017,54(8):1460-1468

[1055].侯維海,王建林,旦巴,胡單.不同生態(tài)因子條件下西藏青稞種子表型性狀的相關(guān)分析[J].核農(nóng)學(xué)報(bào),2017,31(10):2063-2071

[1056].張江林,侯文峰,魯劍巍,任濤,叢日環(huán),李小坤.不同施氮量和移栽密度對(duì)水稻產(chǎn)量及灌漿特性的影響[J].中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2017,19(2):75-85

[1057].栗振義,張綺芯,仝宗永,李躍,徐洪雨,萬修福,畢舒貽,曹婧,何峰,萬里強(qiáng),李向林.不同紫花苜蓿品種對(duì)低磷環(huán)境的形態(tài)與生理響應(yīng)分析[J].中國(guó)農(nóng)業(yè)科學(xué),2017,50(20):3898-3907

[1058].趙艷琳,張正健,楊立穎.茶葉提取物的抑菌作用研究[J].包裝工程,2017,第38卷第11期

[1059].楊帆,李捷,于淑亭,張宇.船舶壓載水浮游生物檢測(cè)方法研究進(jìn)展[J].環(huán)境科學(xué)與技術(shù),2017,第40卷第4期

[1060].汪欲鵬,武志峰,歐陽鴻飛,王智權(quán),譚雪明,石慶華,潘曉華,吳自明.大粒型水稻材料千粒質(zhì)量的QTL檢測(cè)[J].江蘇農(nóng)業(yè)科學(xué),2017年第45卷第13期

[1061].邢志鵬,朱明,吳培,錢海軍,曹偉偉,胡雅杰,郭保衛(wèi),魏海燕,許軻,霍中洋,戴其根,張洪程.稻麥兩熟制條件下缽苗機(jī)插方式對(duì)不同類型水稻品種米質(zhì)的影響[J].作物學(xué)報(bào),2017,43(4):581-595

[1062].李洪果.杜仲遺傳多樣性分析、核心種質(zhì)構(gòu)建及分子鑒別[D].北京:中國(guó)林業(yè)科學(xué)研究院,2017

[1063].鄒小云,劉寶林,宋來強(qiáng),官春云.甘藍(lán)型油菜種質(zhì)苗期氮素營(yíng)養(yǎng)效率的鑒定與評(píng)價(jià)[J].中國(guó)油料作物學(xué)報(bào),2017,39(1):069-077

[1064].譚亮,劉智皓,陳啟亮,李英文.河道整治對(duì)水質(zhì)及浮游生物群落特征的影響[J].重慶師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,第34卷第4期

[1065].李雁玲,張肖,馮梅,韓占江,李志軍.胡楊(Populuseuphratica)異形葉葉片內(nèi)源激素特征研究[J].塔里木大學(xué)學(xué)報(bào)

[1066].李雁玲.胡楊異形葉光合水分生理特性與個(gè)體發(fā)育階段的關(guān)系[D].阿拉爾:塔里木大學(xué),2017

[1067].黃文娟,韓鈴,焦培培,張丹.胡楊異形葉葉柄長(zhǎng)度與葉片形態(tài)指標(biāo)的關(guān)系[J].江蘇農(nóng)業(yè)科學(xué)2017年第45卷第1期

[1068].邢志鵬.機(jī)械化種植方式對(duì)水稻綜合生產(chǎn)力及稻麥周年生產(chǎn)的影響[D].揚(yáng)州:揚(yáng)州大學(xué),2017

[1069].李丹丹.基于SNP芯片的"濰麥8號(hào)/安農(nóng)91168"群體農(nóng)藝及產(chǎn)量性狀QTL定位[D].泰安:山東農(nóng)業(yè)大學(xué),2017

[1070].蘇琳琳,楊珍平,夏清,王寶青,孫敏,高志強(qiáng).加拿大硬麥在晉麥區(qū)產(chǎn)量與籽粒品質(zhì)的研究[J].山西農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,37(3):158

[1071].公婷婷.中國(guó)水稻起源、馴化及傳播研究[D].北京:中央民族大學(xué),2017

[1072].高圣風(fēng),劉愛勤,桑利偉,茍亞峰,孫世偉,王政,孟倩倩.枯草芽胞桿菌VD18R19在胡椒上的定殖動(dòng)態(tài)及促生作用和對(duì)胡椒瘟病的防治效果[J].中國(guó)生物防治學(xué)報(bào),2017,33(5)650-657

[1073].牛凱萌,徐俊波,鐘亮,王華,朱英.利用分子標(biāo)記輔助選擇改良浙恢7954的稻米品質(zhì)[J].浙江農(nóng)業(yè)學(xué)報(bào),2017,29(8):1221-227

[1074].楊小翠.苜蓿遺傳多樣性及3個(gè)主栽品種的產(chǎn)草量和品質(zhì)分析[D].蚌埠:安徽科技學(xué)院,2017

[1075].劉之廣,賈繼文,李成亮,諸葛玉平,王一川,盛艷萍,李劍.農(nóng)業(yè)院校依托國(guó)家級(jí)科研平臺(tái)的實(shí)驗(yàn)教學(xué)改革[J].實(shí)驗(yàn)室科學(xué),2017,第20卷第4期

[1076].耿慶河,王蘭芬,武晶,王述民.普通菜豆籽粒大小與形狀的QTL定位[J].作物學(xué)報(bào),2017,43(8):1149-1160

[1077].茍小蘭,李亞松,蘇艷秋,劉梅,張良.乳酸菌制劑塘口擴(kuò)培技術(shù)及在南美白對(duì)蝦中的應(yīng)用[J].蝦蟹養(yǎng)殖,DOI:10.14184/j.cnki.issn1004-843x.2017.09.021

[1078].刁松鋒,李芳東,段偉,韓衛(wèi)娟,孫鵬,傅建敏.柿雜交F1代葉表型遺傳多樣性研究[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,22(2):32-44

[1079].蔣欣梅,王波,于錫宏,吳鳳芝,張修國(guó),楊光鵬,王欣.雙斷根套管嫁接方法對(duì)番茄苗愈合及根系再生的影響[J].東北農(nóng)業(yè)大學(xué)學(xué)報(bào),第48卷第9期

[1080].何冰紓,鐘雨越,喬永利,郭東偉.水稻粉質(zhì)胚乳突變體flo(t)的子粒性狀及淀粉理化特性分析[J].作物雜志,2017(4):67-71

[1081].楊會(huì)肖,曹彥斌,廖煥琴,潘文,徐斌.水肥脅迫對(duì)尾葉桉無性系生長(zhǎng)及葉片變異的影響研究[J].熱帶亞熱帶植物學(xué)報(bào),2017,25(3):218-224

[1082].張志飛,龔梨霞,文昭竹,穆麟,李志才.酸銅對(duì)紫花苜蓿種子萌發(fā)及根系生長(zhǎng)的影響[J].中國(guó)草地學(xué)報(bào),2017,第39卷第3期

[1083].崔世鋼,秦建華.圖像處理法測(cè)定油菜葉面積的研究[J].湖北農(nóng)業(yè)科學(xué),第55卷第13期

[1084].崔石新.微壟覆膜側(cè)播栽培對(duì)旱作馬鈴薯生長(zhǎng)發(fā)育及產(chǎn)量的影響[D].呼和浩特:內(nèi)蒙古大學(xué),2017

[1085].才碩,時(shí)紅,潘曉華,劉方平,謝亨旺,許亞群,徐濤,曹娜.微納米氣泡增氧灌溉對(duì)雙季稻需水特性及產(chǎn)量的影響[J].節(jié)水灌溉,2017年第2期

[1086].王升星,牛影,陳聰靈,鄭樂,馬歡歡,時(shí)曼麗,秦學(xué)峰,黃陳,朱玉磊,張海萍,盧杰,常成,馬傳喜.小麥單株產(chǎn)量及其相關(guān)性狀的全基因組QTL分析[J].安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,44(4):720-725

[1087].劉子會(huì),孫書孌,李強(qiáng),趙明輝,李會(huì)敏,喬文臣,孟祥海,李丁,魏建偉,丁倩,郭秀林,趙鳳梧.小麥基因型衡9966與親本及近緣品種籽粒性狀與沉降值測(cè)試及分析[J].AgriculturalScience&Technology,2017,18(8):1378-1383

[1088].陳路路.小麥種子發(fā)育過程中活力變化及成熟脫水保護(hù)機(jī)制研究[D].泰安:山東農(nóng)業(yè)大學(xué),2017

[1089].王緒春,歐歡,徐崇志,林敏娟.新疆扁桃雜交子代花性狀變異與產(chǎn)量性狀相關(guān)分析[J].2017

[1090].郭衛(wèi)紅,王華,虞木奎,吳統(tǒng)貴,韓有志.沿海地區(qū)水杉葉片性狀的緯度變化機(jī)制[J].應(yīng)用生態(tài)學(xué)報(bào),2017年3月第28卷第3期

[1091].張雷,張鵬,王華,周新華,虞木奎,吳統(tǒng)貴.沿海水杉防護(hù)林帶三維結(jié)構(gòu)參數(shù)模型[J].生態(tài)學(xué)雜志,2017,36(4):1127-1133

[1092].李媛,趙波,王天奇,李奕松,王秀金,扎西措姆,楊凱,萬平.野生小豆和栽培小豆種子表型性狀分析[J].北京農(nóng)學(xué)院學(xué)報(bào),2017,32(4):8-13

[1093].張?zhí)煊?周春雷,劉喜,孫愛伶,曹鵬輝,ThanhliemNGUYEN,田云錄,翟虎渠,江玲.一個(gè)水稻溫敏黃化突變體的表型分析和基因定位[J].作物學(xué)報(bào),2017,43(10):1426-1433

[1094].丁蒙蒙.引進(jìn)棗品種在新疆地區(qū)花粉育性和結(jié)實(shí)性研究[D].阿拉爾:塔里木大學(xué),2017

[1095].尚佳薇,王創(chuàng)云,王楠,李國(guó)君,段運(yùn)平,郝轉(zhuǎn)芳,王振華.玉米耐深播優(yōu)異種質(zhì)的表型與生理特征分析[J].植物遺傳資源學(xué)報(bào),2017,18(1):80-87

[1096].隋丹.長(zhǎng)期灌溉造紙廢水對(duì)濕地蘆葦根系吸收重金屬的作用研究[D].沈陽:沈陽農(nóng)業(yè)大學(xué),2017

[1097].溫大興.種子生產(chǎn)過程中氮肥和水分調(diào)控小麥種子活力的機(jī)理解析[D].泰安:山東農(nóng)業(yè)大學(xué),2017

[1098].Jing Xu,Li Wang,Mengyu Zhou. et al. Narrow albino leaf 1 is allelic to CHR729, regulates leaf morphogenesis and development by affecting auxin metabolism in rice.Plant Growth Regulation.May 2017, Volume 82, Issue 1, pp 175–186

[1099].Danmei Gao,Xingang Zhou,Yadong Duan,Xuepeng Fu,Fengzhi Wu.Wheat cover crop promoted cucumber seedling growth through regulating soil nutrient resources or soil microbial communities.Plant and Soil.September 2017, Volume 418, Issue 1–2, pp 459–475

[1100].Ke Huang,Dekai Wang,Penggen Duan,Baolan Zhang,Ran Xu,Na Li,Yunhai Li.WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice.the plant journal.Volume 91, Issue 5 September 2017 Pages 849–860

[1101].Yipu Li,Lixiu Tong,Lele Deng,Qiyu Liu,Yuexian Xing,Chao Wang,Baoshen Liu,Xiaohong Yang,Mingliang Xu.Evaluation of ZmCCT haplotypes for genetic improvement of maize hybrids.Theoretical and Applied Genetics.December 2017, Volume 130, Issue 12, pp 2587–2600

[1102].Zheng B-Q, Zou L-H, Li K, Wan X, Wang Y (2017) Photosynthetic, morphological, and reproductive variations in Cypripedium tibeticum in relation to different light regimes in a subalpine forest. PLoS ONE12(7): e0181274. https://doi.org/10.1371/journal.pone.0181274

[1103].Zhang, H., Xu, H., Feng, M. and Zhu, Y. (2017) Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress. Plant Biotechnol. J., doi: 10.1111/pbi.12745

[1104].Hui Zhang, Jinshan Zhang, Jun Yan, Feng Gou, Yanfei Mao, Guiliang Tang, José Ramón Botella, and Jian-Kang Zhu Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits PNAS 2017 114: 5277-5282.

[1105].Penggen Duan,Jinsong Xu,Dali Zeng,Baolan Zhang,Mufan Geng,Guozheng Zhang,Ke Huang,Luojiang Huang,Ran Xu,Song Ge,Qian Qian,Yunhai Li.Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice.Molecular Plant[J].Volume 10, Issue 5, 1 May 2017, Pages 685-694

[1106].Shuduan Tan,Fangxu Dong,Yuting Yang,Qingru Zeng,Bin ChenLi,hong Jiang.Effects of waterlogging and cadmium on ecophysiological responses and metal bio-accumulation in Bermuda grass (Cynodon dactylon).Environmental Earth Sciences[J].October 2017, 76:719

[1107].He Z, Zeng J, Ren Y, Chen D, Li W, Gao F, Cao Y, Luo T, Yuan G, Wu X, Liang Y, Deng Q, Wang S, Zheng A, Zhu J, Liu H, Wang L, Li P and Li S (2017) OsGIF1 Positively Regulates the Sizes of Stems, Leaves, and Grains in Rice. Front. Plant Sci. 8:1730. doi: 10.3389/fpls.2017.01730

[1108].Daxing Wen, Haicheng Xu, Liuyong Xie, Mingrong He, Hongcun Hou, and Chunqing Zhang. A loose endosperm structure of wheat seed produced under low nitrogen level promotes early germination by accelerating water uptake.Sci Rep. 2017; 7: 3116.Published online 2017 Jun 8. doi: 10.1038/s41598-017-03333-4

[1109].C Fan, H Zhai, H Wang, Y Yue. et al.Identification of QTLs controlling grain protein concentration using a high-density SNP and SSR linkage map in barley (Hordeum vulgare L.).BMC Plant BiologyBMC series – open, inclusive and trusted201717:122 https://doi.org/10.1186/s12870-017-1067-6

[1110].X Wang, G Luo, W Yang, Y Li. et al.Genetic diversity, population structure and marker-trait associations for agronomic and grain traits in wild diploid wheat Triticum urartu.BMC Plant BiologyBMC series – open, inclusive and trusted201717:112 https://doi.org/10.1186/s12870-017-1058-7

[1111].Wang X, Pang Y, Wang C, Chen K, Zhu Y, Shen C, Ali J, Xu J and Li Z (2017) New Candidate Genes Affecting Rice Grain Appearance and Milling Quality Detected by Genome-Wide and Gene-Based Association Analyses. Front. Plant Sci. 7:1998. doi: 10.3389/fpls.2016.01998

[1112].Yan L, Liang F, Xu H, Zhang X, Zhai H, Sun Q and Ni Z (2017) Identification of QTL for Grain Size and Shape on the D Genome of Natural and Synthetic Allohexaploid Wheats with Near-Identical AABB Genomes. Front. Plant Sci. 8:1705. doi: 10.3389/fpls.2017.01705

[1113].Zhai, H., Feng, Z., Du, X. et al. A novel allele of TaGW2-A1 is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat (Triticum aestivum L.).Theor Appl Genet (2017). https://doi.org/10.1007/s00122-017-3017-y

[1114].Yang Wang, Jianwei Lu, Tao Ren, Saddam Hussain, Chen Guo, Sen Wang, Rihuan Cong, Xiaokun Li; Effects of nitrogen and tiller type on grain yield and physiological responses in rice, AoB PLANTS, Volume 9, Issue 2, 1 March 2017, plx012, https://doi.org/10.1093/aobpla/plx012

[1115].Y. Wanga, J.W. Lua, T. Rena, S. Hussain. et al. Influence of tiller heterogeneity on yield components of rice grown under different nitrogen regimes.International Journal of Plant Production 11 (3), July 2017

[1116].Lan Qi, Yan Sun, Jing Li, Long Su, Xiaoming Zheng, Xiaoning Wang, Kaimian Li, Qingwen Yang, Weihua Qiao.Identify QTLs for grain size and weight in common wild rice using chromosome segment substitution lines across six environments.Breeding Science 2017 http://doi.org/10.1270/jsbbs.16082

[1117].Li, S., Gao, F., Xie, K., Zeng, X., Cao, Y., Zeng, J., He, Z., Ren, Y., Li, W., Deng, Q., Wang, S., Zheng, A., Zhu, J., Liu, H., Wang, L. and Li, P. (2016), The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol J, 14: 2134–2146. doi:10.1111/pbi.12569

[1118].ZHANG Hong-wei, CHEN Yu-yu, CHEN Jun-yu, ZHU Yu-jun, HUANG De-run, FAN Ye-yang, ZHUANG Jie-yun.Mapping of q TGW1.1, a Quantitative Trait Locus for 1000-Grain Weight in Rice (Oryza sativa L.).Rice Science, 2015, 22(1): 9?15

[1119].WANG Zhen, CHEN Jun-yu, ZHU Yu-jun, FAN Ye-yang, ZHUANG Jie-yun.Validation of q GS10, a quantitative trait locus for grain size on the long arm of chromosome 10 in rice (Oryza sativa L.).Journal of Integrative Agriculture 2017, 16(1): 16–26

[1120].Zhenbin JIANG, Kang LIAO, Nasi’er MANSUER, Yingying NIU, Hongxiang PANG, Qi SUN, Le XU, Shikui ZHANG.Differences in Light Response Curve and CO2 Response Curve of Korla Fragrant Pear Trees in Different Training Systems.Agricultural Science & Technology, 2016, 17(8): 1762-1766

[1121].Zhang, P.; Wang, H.; Wu, Q.; Yu, M.; Wu, T.Effect of Wind on the Relation of Leaf N, P Stoichiometry with Leaf Morphology in Quercus Species. Forests 2018, 9, 110.

[1122].Wang S-X, Zhu Y-L, Zhang D-X, Shao H, Liu P, Hu J-B, et al. (2017) Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PLoS ONE 12(11): e0188662. https://doi.org/10.1371/journal.pone.0188662

[1123].Lulu Chen, Zhenlin Wang, Meiling Li Xueli Ma, Enyun Tian, Aiqing Sun, Yanping Yin. Analysis of the natural dehydration mechanism during middle and late stages of wheat seeds development by some physiological traits and iTRAQ-based proteomic. Journal of Cereal Science Volume 80, March 2018, Pages 102-110

[1124].Ying Xi, Yizhi Song, David M.Johnson, Meng Li, Huigang Liu, Yingping Huang. Se enhanced phytoremediation of diesel in soil by Trifolium repens. Ecotoxicology and Environmental Safety, Volume 154, 15 June 2018, Pages 137-144

[1125].Yang, H., Wang, W., He, Q. et al. Chromosome segment detection for seed size and shape traits using an improved population of wild soybean chromosome segment substitution lines. Physiol Mol Biol Plants (2017) 23: 877. https://doi.org/10.1007/s12298-017-0468-1

[1126].Bao-Ming Chen, Jin-Quan Su, Hui-Xuan Liao, Shao-Lin Peng.A greater foraging scale, not a higher foraging precision, may facilitate invasion by exotic plants in nutrient-heterogeneous conditions. Annals of Botany, Volume 121, Issue 3, 5 March 2018, Pages 561–569, https://doi.org/10.1093/aob/mcx172

[1127].Jinshan Zhang, Hui Zhang, José Ramón Botella, Jian‐Kang Zhu. Generation of new glutinous rice by CRISPR/Cas9‐targeted mutagenesis of the Waxy gene in elite rice varieties. Journal of Integrative Plant Biology, First published: 23 January 2018 https://doi.org/10.1111/jipb.12620

[1128].He, N., Wu, R., Pan, X. et al. Development and trait evaluation of chromosome single-segment substitution lines of O. meridionalis in the background of O. sativa. Euphytica (2017) 213: 281. https://doi.org/10.1007/s10681-017-2072-4

[1129].Yafan Zhao, Huili Wen, Sachin Teotia, Yanxiu Du, Jing Zhang, Junzhou Li, Hongzheng Sun, Guiliang Tang, Ting Peng, Quanzhi Zhao. Suppression of microRNA159 impacts multiple agronomic traits in rice (Oryza sativa L.). BMC Plant BiologyBMC series – open, inclusive and trusted201717:215.https://doi.org/10.1186/s12870-017-1171-7

[1130].Liu, J., Feng, B., Xu, Z. et al. A genome-wide association study of wheat yield and quality-related traits in southwest China. Mol Breeding (2018) 38: 1. https://doi.org/10.1007/s11032-017-0759-9

[1131].Qinghua Yang, Panpan Zhang, Yang Qu, XiaoliGao, Jibao Liang, Pu Yang, Baili Feng.Comparison of physicochemical properties and cooking edibility of waxy and non-waxy proso millet (Panicum miliaceum L.).Food Chemistry Volume 257, 15 August 2018, Pages 271-278

[1132].Jiafeng JIANG, Jiangang LI, Yuanhua DONG. Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato. Plasma Science and Technology, Volume 20, Number 4

[1133].Tan, KY., Lu, GH., Piao, HT. et al. Current Contamination Status of Perfluoroalkyl Substances in Tapwater from 17 Cities in the Eastern China and Their Correlations with Surface Waters. Bull Environ Contam Toxicol (2017) 99: 224. https://doi.org/10.1007/s00128-017-2109-3

[1134].許樂峰,許昕陽,張歡,等. 水稻晚開花突變體lft1的鑒定與基因克隆[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2018, 41(1): 38-48.

[1135].黃萍,曹輝,張瑞雪,紀(jì)拓,李燕歌,楊洪強(qiáng).蘋果根系生理和葉片光合對(duì)地面不同覆蓋物的差異反應(yīng)[J].中國(guó)農(nóng)業(yè)科學(xué), 2018-111.203.21.2

[1136].李 博,王 容,趙林姝,劉錄祥,張文英,徐延浩. Li離子束注入對(duì)大麥粒型、品質(zhì)及遺傳變異的影響[J]. 核農(nóng)學(xué)報(bào) 2018,32(2):0209-0215.

[1137].陳偉玉,麥志通,蔡開朗,等.不同叢枝菌根菌株對(duì) 3 種珍貴樹種促生效應(yīng)試驗(yàn)[J].廣東農(nóng)業(yè)科學(xué),2017,44(11):13-19.

[1138].熊賢榮,歐 靜,龍海燕,歐陽嘉暉,熊 丹.干旱脅迫對(duì)桃葉杜鵑菌根苗生長(zhǎng)的影響[J]. 西南林業(yè)大學(xué)學(xué)報(bào),2018.Vol.38 N0.1

[1139].佟靜,李素艷,孫向陽,等. 供磷水平對(duì)一串紅橙香公主生長(zhǎng)及根系發(fā)育的影響[J].浙江農(nóng)業(yè)學(xué)報(bào), 2018,30(3):386-392.

[1140].朱亞瓊,鄭偉,王祥,等.混播方式對(duì)豆禾混播草地植物根系構(gòu)型特征的影響.草業(yè)學(xué)報(bào)2018,27(1):73-85.

[1141].祖力克艷·麻那甫, 巴特爾·巴克,薩吉旦·阿卜杜克日木,王孟輝. 沙塵脅迫對(duì)杏葉片光合及熒光特性的影響[J]. 西南農(nóng)業(yè)學(xué)報(bào),2018.Vol.31 No.2

[1142].劉新春,賴運(yùn)平,袁金娥,巴桑玉珍,余毅,馮宗云.育成青稞品種的粒型性狀的非條件與條件關(guān)聯(lián)分析[J].分子植物育種,2017 年,第 15 卷,第 11 期,第 4614-4624 頁

[1143].汪洋.氮素營(yíng)養(yǎng)對(duì)水稻分蘗的產(chǎn)量異質(zhì)性影響及調(diào)控[D].武漢:華中農(nóng)業(yè)大學(xué),2017

[1144].張青松.油菜直播機(jī)開溝旋耕降附減阻機(jī)理與仿真分析[D].武漢:華中農(nóng)業(yè)大學(xué),2017

[1145].王小倩.利用雙向回交導(dǎo)入系和種質(zhì)資源剖析水稻品質(zhì)相關(guān)性狀的遺傳基礎(chǔ)[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2017

[1146].Xingang Zhou,Fengzhi Wu.Effects of amendments of ferulic acid on soil microbial communities in the rhizosphere of cucumber (Cucumis sativus L.)[J].European Journal of Soil Biology Volume 50,May–June 2012,Pages 191–197

[1147].Xu R, Yu H, Wang J, et al. A mitogen-activated protein kinase phosphatase influences grain size and weight in rice.[J]. Plant Journal for Cell & Molecular Biology, 2018.

[1148].Zhai H, Feng Z, Du X, et al. A novel allele of TaGW2 - A1, is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat ( Triticum aestivum, L.)[J]. Theoretical & Applied Genetics, 2018(1):1-15.

[1149].Zhang Y, Li D, Zhang D, et al. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits.[J]. Plant Journal for Cell & Molecular Biology, 2018, 94(5).

[1150].Zhou M, Song X, Jing X U, et al. Construction of Genetic Map and Mapping and Verification of Grain Traits QTLs Using Recombinant Inbred Lines Derived from a Cross Between indica C84 and japonica CJ16B[J]. Chinese Journal of Rice Science, 2018.

[1151].Wang Y, Cai Q, Xie H, et al. Determination of Heterotic Groups and Heterosis Analysis of Yield Performance in indica Rice[J]. Rice Science, 2018(5).

[1152].Wang S, Ma B, Gao Q, et al. Dissecting the genetic basis of heavy panicle hybrid rice uncovered Gn1a, and GS3, as key genes[J]. Theoretical & Applied Genetics, 2018, 131(6):1-13.

[1153].Ling L, Jiafeng J, Jiangang L, et al. Effects of cold plasma treatment on seed germination and seedling growth of soybean.[J]. Scientific Reports, 2014, 4:5859.

[1154].王孟輝,巴特爾·巴克,康麗娟,薛亞榮,薩吉旦·阿卜杜克日木,祖力克艷·麻那甫.沙塵脅迫對(duì)榅桲葉片光合和葉綠素?zé)晒馓匦缘挠绊慬J].中國(guó)農(nóng)業(yè)氣象,2018,39(10):685-692.

[1155].Qi L, Ding Y, Zheng X, et al. Fine mapping and identification of a novel locus qGL12.2, control grain length in wild rice ( Oryza rufipogon, Griff.)[J]. Theoretical & Applied Genetics, 2018, 131(7):1497-1508.

[1156].Xiaoli Fan, Wei Zhang, Na Zhang, et al. Identification of QTL regions for seedling root traits and their effect on nitrogen use efficiency in wheat ( Triticum aestivum, L.)[J]. Theoretical and Applied Genetics:1-22.

[1157].Zhang J, Zhang H, Srivastava A K, et al. Knockdown of Rice MicroRNA166 Confers Drought Resistance by Causing Leaf Rolling and Altering Stem Xylem Development[J]. Plant Physiology, 2018, 176(3):2082.

[1158].肖之源, 王青霞, 王賀,等. 水稻miR444b.2調(diào)控稻瘟病抗性及分蘗[J]. 植物病理學(xué)報(bào), 2017(4):511-522.

[1159].郭淑華, 翟衡, 韓寧,等. 葡萄種間雜交砧木育種F_1代植株耐堿性鹽能力分析[J]. 植物學(xué)報(bào), 2018, 53(1).

[1160].Zhu A, Zhang Y, Zhang Z, et al. Genetic Dissection of qPCG1 for a Quantitative Trait Locus for Percentage of Chalky Grain in Rice (Oryza sativa L.)[J]. Frontiers in plant science, 2018, 9.

[1161].Zhu H, Zhao S, Lu X, et al. Genome duplication improves the resistance of watermelon root to salt stress[J]. Plant Physiology and Biochemistry, 2018.

[1162].Zhang C X, Feng B H, Chen T T, et al. Heat stress-reduced kernel weight in rice at anthesis is associated with impaired source-sink relationship and sugars allocation[J]. Environmental and Experimental Botany, 2018, 155: 718-733.

[1163].Zhao Y F, Peng T, Sun H Z, et al. miR1432‐Os ACOT (Acyl‐CoA thioesterase) module determines grain yield via enhancing grain filling rate in rice[J]. Plant biotechnology journal, 2018.

[1164].Li M, Zhang J, Liu S, et al. Mixed-cropping systems of different rice cultivars have grain yield and quality advantages over mono-cropping systems[J]. bioRxiv, 2018: 317545.

[1165].Yaobin Q I N, Peng C, Yichen C, et al. QTL-Seq Identified a Major QTL for Grain Length and Weight in Rice Using Near Isogenic F 2 Population[J]. Rice Science, 2018, 25(3): 121-131.

[1166].Zhao D Y, Zheng S S, Naeem M K, et al. Screening wheat genotypes for better performance on reduced phosphorus supply by comparing glasshouse experiments with field trials[J]. Plant and Soil, 2018, 430(1-2): 349-360.

[1167].Luo C, Deng Y, Inubushi K, et al. Sludge Biochar Amendment and Alfalfa Revegetation Improve Soil Physicochemical Properties and Increase Diversity of Soil Microbes in Soils from a Rare Earth Element Mining Wasteland[J]. International journal of environmental research and public health, 2018, 15(5): 965.

[1168].Zhang H, Xu H, Feng M, et al. Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress[J]. Plant biotechnology journal, 2018, 16(1): 18-26.

[1169].Jin X, Feng B, Xu Z, et al. TaAAP6-3B, a regulator of grain protein content selected during wheat improvement[J]. BMC plant biology, 2018, 18(1): 71.

[1170].Yu K, Liu D, Chen Y, et al. Unraveling the genetic architecture of grain size in einkorn wheat through linkage and homology mapping, and transcriptomic profiling[J]. bioRxiv, 2018: 377820.

[1171].Wang H, Zhang Y, Sun L, et al. WB1, a Regulator of Endosperm Development in Rice, Is Identified by a Modified MutMap Method[J]. International journal of molecular sciences, 2018, 19(8): 2159.

[1172].李亞會(huì). 白芝麻與黑芝麻功能品質(zhì)差異的研究[D]. 河南工業(yè)大學(xué), 2018.

[1173].肖之源. miR444b.2和RPW8.1調(diào)控稻瘟病抗性及水稻農(nóng)藝性狀的研究[D]. 四川農(nóng)業(yè)大學(xué),2018.

[1174].郭淑華. NaHCO3脅迫對(duì)'左山一'雜交砧木株系生長(zhǎng)發(fā)育及有機(jī)酸分泌的影響[D].山東農(nóng)業(yè)大學(xué),2018.

[1175].陳偉玉, 麥志通, 蔡開朗,等. 不同叢枝菌根菌株對(duì)3種珍貴樹種促生效應(yīng)試驗(yàn)[J]. 廣東農(nóng)業(yè)科學(xué), 2017(11).

[1176].李然, 徐應(yīng)明, 王林,等. 不同錳處理對(duì)鎘脅迫下2種油菜重金屬累積和根系形態(tài)的影響[J]. 生態(tài)毒理學(xué)報(bào), 2018(2).

[1177].宮文萍,李洪振,付希強(qiáng),李豪圣,韓冉,劉成,劉建軍.部分CIMMYT小麥種質(zhì)的耐鹽性鑒定與評(píng)價(jià)[J].麥類作物學(xué)報(bào),2018(09):1065-1071.

[1178].劉慧東, 丁歡歡, 朱景樂,等. 杜仲短周期矮林的密度效應(yīng)[J]. 東北林業(yè)大學(xué)學(xué)報(bào), 2018(4).

[1179].李曉燕. 甘蔗赤條病菌的分離鑒定與遺傳多樣性研究[D].福建農(nóng)林大學(xué),2017.

[1180].姬嬌嬌. 灌水頻率與施肥方式對(duì)苜蓿產(chǎn)量及水肥利用效率的影響[D].蘭州大學(xué),2018.

[1181].房元瑾,孫子淇,苗利娟,齊飛艷,黃冰艷,鄭崢,董文召,湯豐收,張新友.花生籽仁外觀和營(yíng)養(yǎng)品質(zhì)特征及食用型花生育種利用分析[J/OL].植物遺傳資源學(xué)報(bào):1-15[2018-10-26].https://doi-org-s.vpn2.njau.edu.cn/10.13430/j.cnki.jpgr.20180110001.

[1182].劉紅巖, 周正朝, 王寧,等. 黃土丘陵溝壑區(qū)不同植被群落土壤分離速率及其與影響因素的關(guān)系[J]. 河南科學(xué), 2017, 35(6):897-902.

[1183].孫妍, 蘇龍, 喬衛(wèi)華,等. 基于染色體片段置換系的野生稻粒寬QTL-qGW8.1的精細(xì)定位[J]. 植物遺傳資源學(xué)報(bào), 2018(1):135-142.

[1184].丁膺賓,張莉珍,許睿,王艷艷,鄭曉明,張麗芳,程云連,吳凡,楊慶文,喬衛(wèi)華,蘭進(jìn)好.基于染色體片段置換系的野生稻粒長(zhǎng)QTL——qGL12的精細(xì)定位[J].中國(guó)農(nóng)業(yè)科學(xué),2018,51(18):3435-3444.

[1185].崔世鋼,秦建華,張永立.基于圖像處理技術(shù)的植物葉片面積和周長(zhǎng)測(cè)量[J].江蘇農(nóng)業(yè)科學(xué),2018,46(15):187-189.

[1186].黃千容. 江南油杉苗期根葉物候相關(guān)性及其節(jié)點(diǎn)養(yǎng)分含量變化研究[D].中南林業(yè)科技大學(xué),2017.

[1187].蘇樑, 王華. 喀斯特峰叢洼地不同植被恢復(fù)階段細(xì)根生物量、形態(tài)特征及其影響因素[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2018, 29(3):783-789.

[1188].奉寶兵. 利用CRISPR/Cas9技術(shù)編輯淀粉合成基因Pullulan[D]. 中國(guó)農(nóng)業(yè)科學(xué)院, 2017.

[1189].王曉琪,姚媛媛,陳寶成,劉之廣,朱家輝,周華敏,梁海,陳劍秋.硫酸法鈦石膏作為土壤調(diào)理劑在油菜上的施用效果研究[J].水土保持學(xué)報(bào),2018,32(04):333-338+345.

[1190].何中山. 水稻OsGIF1基因功能分析[D].四川農(nóng)業(yè)大學(xué),2017.

[1191].梁安民. 水稻成蘗特性及主要農(nóng)藝性狀的比較分析[D]. 武漢大學(xué), 2017.

[1192].代明笠. 水稻庫(kù)源多效性基因SS1、SS2、Ghd7、Ghd8的聚合效應(yīng)分析, 2018.

[1193].周夢(mèng)玉, 宋昕蔚, 徐靜,等. 秈稻C84和粳稻春江16B重組自交系遺傳圖譜構(gòu)建及籽粒性狀QTL定位與驗(yàn)證[J]. 中國(guó)水稻科學(xué), 2018(3).

[1194].裴艷茹. 小麥—長(zhǎng)穗偃麥草后代種質(zhì)系的鑒定及遺傳分析[D].山東農(nóng)業(yè)大學(xué),2018.

[1195].王新. 應(yīng)用CRISPR/Cas9基因編輯技術(shù)定向改良靖西香糯株高[D].廣西大學(xué),2018.

[1196].魏丹,胡柔璇,趙慶,唐洪輝.指數(shù)施肥下不同氮素濃度對(duì)羊蹄甲2個(gè)家系幼苗的生長(zhǎng)影響[J].西北林學(xué)院學(xué)報(bào),2018,33(05):116-122+207.

[1197].袁青麗, 張海洋, 苗紅梅,等. 漬害脅迫對(duì)芝麻籽粒及制油品質(zhì)的影響[J]. 華北農(nóng)學(xué)報(bào), 2018, 33(2):202-208.

[1198].Qin Ran,Delara AKHTER,Yang C C, et al. SRG1 Encoding a Kinesin-4 Protein Is an Important Factor for Determining Grain Shape in Rice[J].Rice Science,2018,25(6):297-307

[1199].Fan, X., Zhang, W., Zhang, N. et al. Identification of QTL regions for seedling root traits and their effect on nitrogen use efficiency in wheat (Triticum aestivum L.)[J].Theor Appl Genet (2018). https://doi.org/10.1007/s00122-018-3183-6

[1200].Liangrong Jiang, Jingsheng Zheng, Zhiyong Zhang et al. Two independent grain-length mutants mapped to a single region on the long arm of chromosome 2 in rice[J]. Bragantia vol.77 no.3 Campinas Jul./Sept. 2018 Epub Aug 02, 2018. http://dx.doi.org/10.1590/1678-4499.2017119

[1201].陶巧靜, 付濤, 項(xiàng)錫娜, 等. 模擬酸雨對(duì)西洋杜鵑生理生態(tài)特性的影響[J]. 生態(tài)學(xué)報(bào), 2014, 34(8): 2020-2027. http://dx.doi.org/10.5846/stxb2013060915311531

[1202].姚程, 胡小貞, 耿榮妹, 等. 幾種水陸交錯(cuò)帶植物對(duì)湖濱帶底質(zhì)的穩(wěn)固作用[J]. 湖泊科學(xué),2017,29(1):105-115.

[1203].Zhaoyong Gong, Fang Cheng, Zihao Liu, et al. Recent developments of seeds quality inspection and grading based on machine vision[J].2015 ASABE Annual International Meeting 152188378.(doi:10.13031/aim.20152188378)

[1204].武建新, 李丹竹, 陳桂華, 等. 9個(gè)白三葉品種對(duì)滲透脅迫和干旱脅迫的響應(yīng)[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2018, 44(05):13-18.

[1205].張志飛, 武建新, 曾寧波, 等. 66份白三葉種質(zhì)資源萌發(fā)期耐鹽性綜合評(píng)價(jià)[J]. 草業(yè)科學(xué), 2018, 35(9):2157-2165.

[1206].Liu J, Xu Z, Fan X, et al. A genome-wide association study of wheat spike related traits in China[J]. Frontiers in plant science, 2018, 9.

[1207].Yao X, Wu K, Yao Y, et al. Construction of a high-density genetic map: genotyping by sequencing (GBS) to map purple seed coat color (Psc) in hulless barley[J]. 2018, 155(1).

[1208].Zhou C, Huang Y, Jia B, et al. Effects of Cultivar, Nitrogen Rate, and Planting Density on Rice-Grain Quality[J]. Agronomy, 2018, 8(11): 246.

[1209].Ren H, Wen L, Guo Y, et al. Expressional and Functional Verification of the Involvement of CmEXPA4 in Chrysanthemum Root Development[J]. Journal of Plant Growth Regulation, 2019: 1-12.

[1210].Liu H, Zhu J, Ding H, et al. Foliar spray of growth regulators significantly increases trans-1, 4-polyisoprene production from Eucommia ulmoides Oliver short-rotation coppice[J]. Industrial crops and products, 2018, 113: 383-390.

[1211].Li J, Zhao J, Li Y, et al. Identification of a novel seed size associated locus SW9-1 in soybean[J]. The Crop Journal, 2019.

[1212].朱安東, 孫志超, 朱玉君, 等. 應(yīng)用剩余雜合體衍生群體定位水稻粒重粒形 QTL[J]. 中國(guó)水稻科學(xué), 2019, 33(2): 144-151.

[1213].Fang C, Li L, He R, et al. Identification of S23 causing both interspecific hybrid male sterility and environment-conditioned male sterility in rice[J]. 2019.

[1214].XUE P, ZHANG Y, LOU X, et al. Mapping and genetic validation of a grain size QTL qGS7. 1 in rice (Oryza sativa L.)[J]. 2018.

[1215].Sun L, Wang X, Yu K, et al. Mapping of QTLs controlling seed weight and seed-shape traits in Brassica napus L. using a high-density SNP map[J]. Euphytica, 2018, 214(12): 228.

[1216].Wu M, Wei Q, Xu L, et al. Piriformospora indica enhances phosphorus absorption by stimulating acid phosphatase activities and organic acid accumulation in Brassica napus[J]. Plant and Soil, 2018, 432(1-2): 333-344.

[1217].Su Q, Zhang X, Zhang W, et al. QTL Detection for Kernel Size and Weight in Bread Wheat (Triticum aestivum L.) Using a High-Density SNP and SSR-Based Linkage Map[J]. Frontiers in plant science, 2018, 9.

[1218].Xi Y, Liu H, Johnson D, et al. Selenium enhances Conyza canadensis phytoremediation of polycyclic aromatic hydrocarbons in soil[J]. Journal of Soils and Sediments, 2019: 1-13.

[1219].Sun L, Wang X, Yu K, et al. Mapping of QTLs controlling seed weight and seed-shape traits in Brassica napus L. using a high-density SNP map[J]. Euphytica, 2018, 214(12): 228.

[1220].Li Q Y, Xu Q Q, Jiang Y M, et al. The correlation between wheat black point and agronomic traits in the North China Plain[J]. Crop Protection, 2019, 119: 17-23.

[1221].Yang X, Wang B, Chen L, et al. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality[J]. Scientific reports, 2019, 9(1): 3742.

[1222].李振松, 栗振義, 張綺芯, 等. 敖漢和維多利亞紫花苜蓿對(duì)低磷環(huán)境應(yīng)激機(jī)制的比較[J]. 草業(yè)學(xué)報(bào), 2019(1).

[1223].羅穎潔, 武建新, 文昭竹, 等. 白三葉萌發(fā)期耐旱性評(píng)價(jià)中PEG6000適宜濃度篩選[J]. 湖南生態(tài)科學(xué)學(xué)報(bào), 2018(4):6-11.

[1224].武建新, 張志飛, 張鶴山, 等. 白三葉耐酸鋁種質(zhì)資源篩選研究[J]. 草地學(xué)報(bào), 2018, 26(2):497-504.

[1225].劉光發(fā), 宋海燕, 羅婉如, 等. 百里香-丁香羅勒精油抗菌紙對(duì)草莓的防腐保鮮效果[J]. 包裝工程, 2018, 39(19):101-107.

[1226].朱林生. 不同桉樹肥料利用率差異及根系轉(zhuǎn)錄組比較研究[D]. 中國(guó)林業(yè)科學(xué)研究院, 2018.

[1227].李萍. 不同草類及活體草根對(duì)蘋果根系及根區(qū)土壤環(huán)境的影響[D]. 山東農(nóng)業(yè)大學(xué), 2018.

[1228].徐味, 韋小麗. 不同基質(zhì)對(duì)棕櫚容器苗生長(zhǎng)和生理特性的影響[J]. 山地農(nóng)業(yè)生物學(xué)報(bào), 2018 (2018 年 03): 27-32, 43.

[1229].許苗苗. 不同鐮孢菌侵染玉米莖部的效能分析[D]. 河北農(nóng)業(yè)大學(xué), 2018.

[1230].穆帝秀. 不同磷水平下 AM 真菌對(duì)丹參生長(zhǎng)發(fā)育的影響[D]. 成都中醫(yī)藥大學(xué), 2018.

[1231].于洪杰, 陳少燦, 周曉靜, 等. 不同溶劑萃取對(duì)分蘗洋蔥根系分泌物化感作用的影響[J]. 北方園藝, 2019(1).

[1232].Xu R, Duan P, Yu H, et al. Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice[J]. Molecular Plant, 2018, 11(6): 860-873.

[1233].穆帝秀. 不同磷水平下 AM 真菌對(duì)丹參生長(zhǎng)發(fā)育的影響[D]. 成都中醫(yī)藥大學(xué), 2018.

[1234].周夢(mèng)玉. 超級(jí)稻春優(yōu)84重組自交系遺傳圖譜構(gòu)建及其籽粒和葉片性狀QTL定位[D]. 2018.

[1235].邱東, 吳甘霖, 劉玲, 等. 城市香樟葉片干物質(zhì)含量及比葉面積的時(shí)空變異[J]. 2019.

[1236].黃萍. 地面覆蓋和鉆孔通氣對(duì)蘋果根系和植株生長(zhǎng)發(fā)育的影響[D]. 山東農(nóng)業(yè)大學(xué), 2018.

[1237].劉慧東. 杜仲短周期矮林的密度效應(yīng)和調(diào)節(jié)劑調(diào)控作用[D]. 中國(guó)林業(yè)科學(xué)研究院, 2018.

[1238].馮豐. 改性蘋果廢枝及其與肥料配用對(duì)蘋果根區(qū)土壤及植株生長(zhǎng)發(fā)育的影響[D]. 山東農(nóng)業(yè)大學(xué), 2018.

[1239].馮豐, 曹輝, 荀咪, 等. 改性蘋果廢枝與化肥配施對(duì)蘋果根區(qū)土壤及根系構(gòu)型的影響[J]. 山東農(nóng)業(yè)科學(xué), 2018, 50(09):89-94.

[1240].艾鵬睿, 馬英杰, 馬亮. 干旱區(qū)滴灌棗棉間作模式下棗樹棵間蒸發(fā)的變化規(guī)律[J]. 生 態(tài) 學(xué) 報(bào), 2018, 38(13).

[1241].時(shí)俊帥, 陳雙林, 郭子武, 等. 高節(jié)竹立竹干形, 冠形和葉形變化的海拔效應(yīng)[J]. 東北林業(yè)大學(xué)學(xué)報(bào), 2018 (10): 4.

[1242].張彩霞, 符冠富, 奉保華, 等. 水稻同化物轉(zhuǎn)運(yùn)及其對(duì)逆境脅迫響應(yīng)的機(jī)理[J]. 中國(guó)農(nóng)業(yè)氣象, 2018, 39(02): 73-83.

[1243].紀(jì)拓, 楊洪強(qiáng). 根區(qū)控氧對(duì)平邑甜茶幼苗根系及根/冠比的影響[J]. 植物生理學(xué)報(bào), 2018 (6): 8.

[1244].劉玉梅, 艾希珍, 于賢昌. 5-氨基乙酰丙酸對(duì)亞適宜溫光條件下黃瓜幼苗光合特性的影響[J]. 園藝學(xué)報(bào), 2010, 37(1): 65-71.

[1245].于海濤. 功能基因?qū)π←溍缙诓煌姿较赂敌誀畹挠绊慬J]. 安徽農(nóng)業(yè)科學(xué)(21):55-60.

[1246].紀(jì)拓. 果園土壤CO_2和O_2濃度變化及蘋果根區(qū)增氧的生物學(xué)效應(yīng)[D]. 2018.

[1247].張鵬, 孫陽, 虞木奎, 等. 海岸梯度上黑松針葉形態(tài)與解剖結(jié)構(gòu)性狀的變化規(guī)律[J]. 植物研究, 2018, 38(3):343-348.

[1248].祁金玉, 宋瑞清. 褐環(huán)乳牛肝菌與綠木霉復(fù)合接種對(duì)遼西北地區(qū)樟子松根系的影響[J]. 林業(yè)科學(xué), 2018, 54(5).

[1249].劉光發(fā), 張正健, 楊立穎, 等. 厚樸提取物抗菌包裝紙對(duì)奶酪貨架壽命的影響[J]. 包裝工程, 2018.

[1250].金建楚. 湖南地方稻品種表型性狀與SSR遺傳多樣性研究[D]. 2018.

[1251].郭孝玉, 余坤勇, 李增祿, 等. 基于最優(yōu)權(quán)重的落葉松單木葉面積組合預(yù)測(cè)模型[J]. 森林與環(huán)境學(xué)報(bào), 2018.

[1252].安常蓉, 韋小麗, 段如雁, 等. 接種方式對(duì)花櫚木幼苗結(jié)瘤效應(yīng)的影響[J]. 南京林業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版, 2018.

[1253].宋嬌. 藜麥種質(zhì)資源遺傳多樣性研究及藜麥品種(系)變異率分析[D]. 2018.

[1254].李洪果, 杜紅巖, 賈宏炎, 等. 利用表型性狀構(gòu)建杜仲雄性資源核心種質(zhì)[J]. 分子植物育種, 2018(2).

[1255].祁金玉. 綠木霉與褐環(huán)乳牛肝菌互作提高樟子松對(duì)立枯病抗病性機(jī)制的研究[D]. 2018.

[1256].高方遠(yuǎn), 任鄄勝, 陸賢軍, 等. 綠色優(yōu)質(zhì)高產(chǎn)水稻新品種的選育與應(yīng)用[J]. 生命科學(xué), 2018, 30(10):87-93.

[1257].何丹丹, 賈立國(guó), 秦永林,等. 馬鈴薯氮效率基因型差異及生理機(jī)制研究進(jìn)展[J]. 北方農(nóng)業(yè)學(xué)報(bào), 2018(1).

[1258].張迪, 呂思琪, 張婉婷, 等. 錳脅迫對(duì)不同基因型玉米幼苗抗氧化酶活性及丙二醛含量的影響[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào), 2018(12):27-35.

[1259].金建楚, 李小湘, 黎用朝, 等. 農(nóng)戶保存與種質(zhì)庫(kù)保存的同近名地方稻品種的遺傳多樣性研究[J]. 植物遺傳資源學(xué)報(bào), 2018, v.19(03):106-115+125.

[1260].吳婷. 鉛污染不同粒徑土壤重金屬地球化學(xué)行為及其植物轉(zhuǎn)運(yùn)[D]. 陜西師范大學(xué), 2018.

[1261].全基因組關(guān)聯(lián)定位秈稻種質(zhì)資源外觀和加工品質(zhì)QTL[J]. 作物學(xué)報(bào), 2018.

[1262].薛亞榮. 沙塵和遮陰復(fù)合脅迫對(duì)西梅葉片光合作用的影響[J]. 中國(guó)農(nóng)業(yè)氣象, 2019, 40(03):170-179.

[1263].劉夢(mèng)玲, 朱啟良, 李佳梅,等. 基于細(xì)根解剖特征的樹種耐旱性解析[J]. 中國(guó)水土保持科學(xué), 2018, 16(3).

[1264].段云軒. 施肥量對(duì)水稻生長(zhǎng)發(fā)育及產(chǎn)量的影響[D]. 東北農(nóng)業(yè)大學(xué), 2018.

[1265].張金汕, 賈永紅, 孫鵬, 等. 施鉀和葉面噴施赤霉素對(duì)春小麥種子萌發(fā)的影響[J]. 新疆農(nóng)業(yè)科學(xué), 2018, 55(8): 1384-1391.

[1266].蔡怡聰. 水稻堊白基因 OsPK2 的圖位克隆與功能研究[D]. 中國(guó)農(nóng)業(yè)科學(xué)院, 2018.

[1267].馮博. 水稻抗旱和耐低氮 QTL 定位及優(yōu)異等位基因的聚合效應(yīng)評(píng)價(jià)[D]. 沈陽農(nóng)業(yè)大學(xué), 2018.

[1268].李紫荷. 水稻粒形 QTL 的檢測(cè)和 qTGW4 的遺傳分解[D]. 中國(guó)農(nóng)業(yè)科學(xué)院, 2018.

[1269].肖連杰, 黃捷, 曹鵬輝, 等. 水稻早衰突變體 zs 的鑒定與基因定位[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2018, 41(5): 793-800.

[1270].巴特爾, 巴克, 薩吉旦, 等. 四種果樹葉片光響應(yīng)曲線研究及短時(shí)間沙塵覆蓋對(duì)光合參數(shù)的影響[J]. 北方園藝, 2018 (2): 38-45.

[1271].鄒慧, 曾杰. 土著菌根真菌侵染對(duì)西南樺無性系幼苗生長(zhǎng)和葉片養(yǎng)分的影響[J]. 分子植物育種, 2018, 16(19):312-321.

[1272].鄒慧. 西南樺幼苗接種叢枝菌根真菌的生長(zhǎng)與光合生理響應(yīng)[J]. 熱帶亞熱帶植物學(xué)報(bào), 2018, v.26(4):65-72.

[1273].鄭雅月, 楊璐, 張炳慧, et al. 小麥TaCYP78A5基因的克隆及生物信息學(xué)分析[J]. 西北農(nóng)業(yè)學(xué)報(bào), 2018, v.27(05):63-70.

[1274].仝靖洋, 李少鵬, 劉勝杰, et al. 小麥粒重基因等位變異的高通量分子檢測(cè)及組合分析[J]. 麥類作物學(xué)報(bào), 2018, 38(11):42-50.

[1275].王玉嬌, 吳薇, 郭忠軍, et al. 小麥種子老化處理對(duì)發(fā)芽指標(biāo)及根系的影響[J]. 核農(nóng)學(xué)報(bào), 2017, 32(12).

[1276].朱浩. 小麥重要性狀基因的分子檢測(cè)及遺傳效應(yīng)分析[D]. 西北農(nóng)林科技大學(xué), 2018.

[1277].宋政儒, 王崢嶸, 楊先裕, et al. 小葉蚊母春季葉質(zhì)體色素含量變化和葉動(dòng)態(tài)變化研究[J]. 湖北農(nóng)業(yè)科學(xué), 2018, 57(21):79-81,84.

[1278].Li X, Lv X, Wang X, et al. Effects of abiotic stress on anthocyanin accumulation and grain weight in purple wheat[J]. Crop and Pasture Science, 2019, 69(12): 1208-1214.

[1279].趙攀衡. 燕麥不同磷效率品種耐低磷脅迫的根系形態(tài)及對(duì)磷素吸收的研究[D]. 2018.

[1280].陳靜靜. 野生大豆種子硬實(shí)相關(guān)QTL發(fā)掘[D]. 2018.

[1281].鈔書粉. 異淀粉酶基因ISA1的定向編輯對(duì)稻米品質(zhì)的影響[D]. 2018.

[1282].王丹. 用農(nóng)藝性狀和分子標(biāo)記評(píng)估引入小麥資源的遺傳多樣性[D]. 西北農(nóng)林科技大學(xué), 2018.

[1283].肖文立, 肖文芳, 廖宜濤, 等. 油菜直播機(jī)犁式正位深施肥裝置設(shè)計(jì)與性能試驗(yàn)[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào), 2018, 37(4): 131-137.

[1284].王明懷, 張應(yīng)中, 唐旭曉. 油茶輕基質(zhì)育苗試驗(yàn)[J]. 林業(yè)與環(huán)境科學(xué), 2018 (6): 10.

[1285].任紅劍, 豐震, 喬謙, 等. 元寶楓葉片形態(tài)特征的地理變異[J]. 西北林學(xué)院學(xué)報(bào), 2018 (2018 年 01): 113-119.

[1286].公華銳, 駱洪義, 亓艷艷, 等. 增施銨態(tài)氮對(duì)北方冬季基質(zhì)栽培普通白菜根系特性及養(yǎng)分利用的影響[J]. 中國(guó)蔬菜, 2018 (12): 33-39.

[1287].何張齊, 季志利, 唐麗. 浙西南山地日本扁柏人工林生長(zhǎng)過程及模型研究[J]. 湖南林業(yè)科技, 2018 (2018 年 02): 1-5.

[1288].魏其超, 苗紅梅, 汪學(xué)德, 等. 芝麻枯萎病害條件下籽粒及其制油品質(zhì)變化分析[J]. 河南農(nóng)業(yè)科學(xué), 2018, 47(12):70-77.

[1289].張亨, 孫同高, 郭智威, 等. 植物生長(zhǎng)調(diào)節(jié)劑對(duì)樂昌含笑根系生長(zhǎng)的影響[J]. 綠色科技, 2018(11).

[1290].栗振義. 紫花苜蓿對(duì)低磷脅迫的響應(yīng)及相關(guān) miRNAs 的功能分析[D]. 中國(guó)農(nóng)業(yè)科學(xué)院, 2018.

[1291].袁青麗. 漬害處理對(duì)芝麻籽粒及制品品質(zhì)的影響[D]. 河南工業(yè)大學(xué), 2018.

[1292].楊萬基. 不同栽培措施對(duì)冬季日光溫室辣椒生長(zhǎng)及產(chǎn)量的影響[D].東北農(nóng)業(yè)大學(xué),2018.

[1293].黃婷. 淡紫擬青霉代謝產(chǎn)物對(duì)番茄生長(zhǎng)及根結(jié)線蟲病的影響[D].東北農(nóng)業(yè)大學(xué),2018.

[1294].周同喜. 甘藍(lán)型油菜粒重位點(diǎn)TSWA7a的精細(xì)定位及候選基因鑒定[D].華中農(nóng)業(yè)大學(xué),2018.

[1295].張鵬. 海岸梯度上黑松針葉性狀的適應(yīng)性研究[D].中國(guó)林業(yè)科學(xué)研究院,2018.

[1296].杜芳芳. 海藻精的施用對(duì)水稻生長(zhǎng)和產(chǎn)量的影響[D].廣西大學(xué),2018.

[1297].商林.基于圖像邊緣檢測(cè)的水稻粒型分析研究[J].農(nóng)機(jī)化研究,2019,41(12):180-183.

[1298].薛亞榮,巴特爾·巴克.沙塵脅迫對(duì)新疆引進(jìn)歐洲李葉片光合和熒光特性的影響[J].經(jīng)濟(jì)林研究,2018,36(04):123-129.

[1299].王孟輝,巴特爾·巴克,薩吉旦·阿卜杜克日木,薛亞榮,康麗娟,祖力克艷·麻那甫.沙塵脅迫對(duì)山楂光合、熒光特性的影響[J].干旱區(qū)資源與環(huán)境,2019,33(03):189-194.

[1300].薛炮. 水稻粒形QTLqGS7.1的定位與驗(yàn)證[D].中國(guó)農(nóng)業(yè)科學(xué)院,2018.

[1301].土壤改良劑對(duì)農(nóng)田土壤理化性質(zhì)及小麥生長(zhǎng)的影響研究[D].安徽農(nóng)業(yè)大學(xué),2018.

[1302].小麥Glu-1啟動(dòng)子保守順式調(diào)控模塊及轉(zhuǎn)錄因子TaNAC100的功能解析[D].中國(guó)農(nóng)業(yè)大學(xué),2019.

[1303].玉米苗期耐鹽堿生理特性及其雜種優(yōu)勢(shì)分析[D].東北農(nóng)業(yè)大學(xué),2018.

[1304].韓新桐. 玉米籽粒容重相關(guān)性狀及一般配合力QTL定位[D].河北農(nóng)業(yè)大學(xué),2018.

[1305].易騰飛. 中國(guó)冬麥區(qū)小麥品種農(nóng)藝性狀與品質(zhì)性狀的全基因組關(guān)聯(lián)分析[D].河北農(nóng)業(yè)大學(xué),2018.

[1306].張棟棟,李萌,甘龍,李曉玲,任東,胥燾,黃應(yīng)平.重金屬Cd-Cu復(fù)合污染對(duì)蒼耳生長(zhǎng)及葉綠素?zé)晒馓匦缘挠绊慬J].武漢大學(xué)學(xué)報(bào)(理學(xué)版),2019,65(01):66-76.

在線客服

  • 產(chǎn)品咨詢 點(diǎn)擊這里給我發(fā)消息
  • 產(chǎn)品咨詢 點(diǎn)擊這里給我發(fā)消息
  • 技術(shù)支持 點(diǎn)擊這里給我發(fā)消息
  • 技術(shù)支持 點(diǎn)擊這里給我發(fā)消息

聯(lián)系我們

  • 杭州萬深檢測(cè)科技有限公司
  • 地址:杭州市西湖區(qū)文二西路11號(hào)418室 310012
  • 電話:0571-89714590 81387570
  • 傳真:0571-89714590
  • E-mail:hzwseen@163.com
  • 更多...